Erin A Wirth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6507332/publications.pdf Version: 2024-02-01

Ερινι Δ \λ/ιρτμ

#	Article	IF	CITATIONS
1	Effect of Fixing Earthquake Depth in ShakeAlert Algorithms on Performance for Intraslab Earthquakes. Seismological Research Letters, 2022, 93, 277-287.	1.9	4
2	The occurrence and hazards of great subduction zone earthquakes. Nature Reviews Earth & Environment, 2022, 3, 125-140.	29.7	17
3	Topographic Response to Simulated MwÂ6.5–7.0 Earthquakes on the Seattle Fault. Bulletin of the Seismological Society of America, 2022, 112, 1436-1462.	2.3	8
4	Toward an Integrative Geological and Geophysical View of Cascadia Subduction Zone Earthquakes. Annual Review of Earth and Planetary Sciences, 2021, 49, 367-398.	11.0	34
5	Ensemble ShakeMaps for Magnitude 9 Earthquakes on the Cascadia Subduction Zone. Seismological Research Letters, 2021, 92, 199-211.	1.9	9
6	Basin Amplification Effects in the Puget Lowland, Washington, from Strong-Motion Recordings and 3D Simulations. Bulletin of the Seismological Society of America, 2020, 110, 534-555.	2.3	14
7	SKS Splitting Beneath Mount St. Helens: Constraints on Subslab Mantle Entrainment. Geochemistry, Geophysics, Geosystems, 2019, 20, 4202-4217.	2.5	9
8	Impact of Downâ€Dip Rupture Limit and Highâ€Stress Drop Subevents on Coseismic Landâ€Level Change during Cascadia Megathrust Earthquakes. Bulletin of the Seismological Society of America, 2019, 109, 2187-2197.	2.3	16
9	Impacts of Simulated M9 Cascadia Subduction Zone Motions on Idealized Systems. Earthquake Spectra, 2019, 35, 1261-1287.	3.1	17
10	Sourceâ€Đependent Amplification of Earthquake Ground Motions in Deep Sedimentary Basins. Geophysical Research Letters, 2019, 46, 6443-6450.	4.0	47
11	Broadband Synthetic Seismograms for Magnitude 9 Earthquakes on the Cascadia Megathrust Based on 3D Simulations and Stochastic Synthetics, Part 2: Rupture Parameters and Variability. Bulletin of the Seismological Society of America, 2018, 108, 2370-2388.	2.3	62
12	Broadband Synthetic Seismograms for Magnitude 9 Earthquakes on the Cascadia Megathrust Based on 3D Simulations and Stochastic Synthetics, Part 1: Methodology and Overall Results. Bulletin of the Seismological Society of America, 2018, 108, 2347-2369.	2.3	112
13	Investigating Segmentation in Cascadia: Anisotropic Crustal Structure and Mantle Wedge Serpentinization from Receiver Functions. Geochemistry, Geophysics, Geosystems, 2017, 18, 3592-3607.	2.5	4
14	Effects of Deep Basins on Structural Collapse during Large Subduction Earthquakes. Earthquake Spectra, 2017, 33, 963-997.	3.1	29
15	A Markov chain Monte Carlo with Gibbs sampling approach to anisotropic receiver function forward modeling. Geophysical Journal International, 2017, 208, 10-23.	2.4	8
16	The seismic signature of lithospheric deformation beneath eastern North America due to Grenville and Appalachian orogenesis. Lithosphere, 2017, 9, 987-1001.	1.4	12
17	Midlithospheric discontinuities and complex anisotropic layering in the mantle lithosphere beneath the Wyoming and Superior Provinces. Journal of Geophysical Research: Solid Earth, 2016, 121, 6675-6697.	3.4	47
18	A contrast in anisotropy across mid-lithospheric discontinuities beneath the central United States—A relic of craton formation. Geology, 2014, 42, 851-854.	4.4	79

Erin A Wirth

#	Article	IF	CITATIONS
19	Mantle flow in subduction systems: The mantle wedge flow field and implications for wedge processes. Journal of Geophysical Research: Solid Earth, 2013, 118, 583-606.	3.4	81
20	Bâ€ŧype olivine fabric and mantle wedge serpentinization beneath the Ryukyu arc. Geophysical Research Letters, 2013, 40, 1697-1702.	4.0	29
21	Multiple layers of seismic anisotropy and a lowâ€velocity region in the mantle wedge beneath Japan: Evidence from teleseismic receiver functions. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	38
22	Small-scale convection in the subduction zone mantle wedge. Earth and Planetary Science Letters, 2012, 357-358, 111-118.	4.4	23
23	Frequency-dependent shear wave splitting beneath the Japan and Izu-Bonin subduction zones. Physics of the Earth and Planetary Interiors, 2010, 181, 141-154.	1.9	62
24	Evaluating a Kinematic Method for Generating Broadband Ground Motions for Great Subduction Zone Earthquakes: Application to the 2003 <i>M</i> _w Â8.3 Tokachiâ€Oki Earthquake. Bulletin of the Seismological Society of America, 0, , .	2.3	9
25	Structure and QP–QS Relations in the Seattle and Tualatin Basins from Converted Seismic Phases. Bulletin of the Seismological Society of America, 0, , .	2.3	1