Alexander P Golovanov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6507315/publications.pdf

Version: 2024-02-01

64 papers

2,716 citations

236612 25 h-index 51 g-index

69 all docs 69 docs citations

69 times ranked 4240 citing authors

#	Article	IF	CITATIONS
1	A Simple Method for Improving Protein Solubility and Long-Term Stability. Journal of the American Chemical Society, 2004, 126, 8933-8939.	6.6	382
2	Fingerprinting food: current technologies for the detection of food adulteration and contamination. Chemical Society Reviews, 2012, 41, 5706.	18.7	362
3	Graphene in therapeutics delivery: Problems, solutions and future opportunities. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 104, 235-250.	2.0	197
4	Mutually exclusive interactions drive handover of mRNA from export adaptors to TAP. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5154-5159.	3.3	158
5	Molecular basis of RNA recognition and TAP binding by the SR proteins SRp20 and 9G8. EMBO Journal, 2006, 25, 5126-5137.	3.5	140
6	Graphene as a transparent conductive support for studying biological molecules by transmission electron microscopy. Applied Physics Letters, 2010, 97, .	1.5	138
7	Processing of heteronuclear NMR relaxation data with the new software DASHA. Applied Magnetic Resonance, 1995, 9, 581-588.	0.6	81
8	ParG, a protein required for active partition of bacterial plasmids, has a dimeric ribbon-helix-helix structure. Molecular Microbiology, 2003, 50, 1141-1153.	1.2	76
9	Mapping the binding site for the GTP-binding protein Rac-1 on its inhibitor RhoGDI-1. Structure, 2000, 8, 47-56.	1.6	74
10	The effect of arginine glutamate on the stability of monoclonal antibodies in solution. International Journal of Pharmaceutics, 2014, 473, 126-133.	2.6	64
11	Structure-activity relationships in flexible protein domains: regulation of rho GTPases by RhoGDI and D4 GDI. Journal of Molecular Biology, 2001, 305, 121-135.	2.0	62
12	The Structural Basis of the TIM10 Chaperone Assembly. Journal of Biological Chemistry, 2004, 279, 18959-18966.	1.6	54
13	The solution structure of REF2-I reveals interdomain interactions and regions involved in binding mRNA export factors and RNA. Rna, 2006, 12, 1933-1948.	1.6	44
14	The effect of charge mutations on the stability and aggregation of a human single chain Fv fragment. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 115, 18-30.	2.0	43
15	The Structure and Dynamics of Tandem WW Domains in a Negative Regulator of Notch Signaling, Suppressor of Deltex. Journal of Biological Chemistry, 2004, 279, 34991-35000.	1.6	41
16	Structural Basis for the Recognition of Cellular mRNA Export Factor REF by Herpes Viral Proteins HSV-1 ICP27 and HVS ORF57. PLoS Pathogens, 2011, 7, e1001244.	2.1	41
17	Distinct Domains of Small Tims Involved in Subunit Interaction and Substrate Recognition. Journal of Molecular Biology, 2005, 351, 839-849.	2.0	40
18	The Solution Structure of a Domain from the Neisseria meningitidis Lipoprotein PilP Reveals a New \hat{l}^2 -Sandwich Fold. Journal of Molecular Biology, 2006, 364, 186-195.	2.0	39

#	Article	IF	Citations
19	Two-dimensional 1H-NMR study of the spatial structure of neurotoxin II from Naja naja oxiana. FEBS Journal, 1993, 213, 1213-1223.	0.2	37
20	Specificity and Autoregulation of Notch Binding by Tandem WW Domains in Suppressor of Deltex. Journal of Biological Chemistry, 2007, 282, 29032-29042.	1.6	33
21	Characterizing monoclonal antibody formulations in arginine glutamate solutions using ¹ H NMR spectroscopy. MAbs, 2016, 8, 1245-1258.	2.6	31
22	Monitoring Ras Interactions with the Nucleotide Exchange Factor Son of Sevenless (Sos) Using Site-specific NMR Reporter Signals and Intrinsic Fluorescence. Journal of Biological Chemistry, 2016, 291, 1703-1718.	1.6	31
23	Quantification of casein phosphorylation with conformational interpretation using Raman spectroscopy. Analyst, The, 2007, 132, 1053.	1.7	28
24	Isotopically Discriminated NMR Spectroscopy:  A Tool for Investigating Complex Protein Interactions in Vitro. Journal of the American Chemical Society, 2007, 129, 6528-6535.	6.6	28
25	Orthogonal Techniques to Study the Effect of pH, Sucrose, and Arginine Salts on Monoclonal Antibody Physical Stability and Aggregation During Long-Term Storage. Journal of Pharmaceutical Sciences, 2020, 109, 584-594.	1.6	26
26	The Unstructured N-terminal Tail of ParG Modulates Assembly of a Quaternary Nucleoprotein Complex in Transcription Repression. Journal of Biological Chemistry, 2005, 280, 28683-28691.	1.6	25
27	1H, 13C and 15N resonance assignment for the human K-Ras at physiological pH. Biomolecular NMR Assignments, 2013, 7, 215-219.	0.4	25
28	Investigating Liquid–Liquid Phase Separation of a Monoclonal Antibody Using Solution-State NMR Spectroscopy: Effect of Arg·Glu and Arg·HCl. Molecular Pharmaceutics, 2017, 14, 2852-2860.	2.3	25
29	Increasing the sensitivity of cryoprobe protein NMR experiments by using the sole low-conductivity arginine glutamate salt. Journal of Magnetic Resonance, 2008, 191, 335-339.	1.2	24
30	Arginine to Lysine Mutations Increase the Aggregation Stability of a Single-Chain Variable Fragment through Unfolded-State Interactions. Biochemistry, 2019, 58, 3413-3421.	1.2	24
31	Competitive and Cooperative Interactions Mediate RNA Transfer from Herpesvirus Saimiri ORF57 to the Mammalian Export Adaptor ALYREF. PLoS Pathogens, 2014, 10, e1003907.	2.1	23
32	The structure of the folded domain from the signature multifunctional protein ICP27 from herpes simplex virus-1 reveals an intertwined dimer. Scientific Reports, 2015, 5, 11234.	1.6	23
33	The herpes viral transcription factor ICP4 forms a novel DNA recognition complex. Nucleic Acids Research, 2017, 45, 8064-8078.	6.5	23
34	The Interaction of the Cellular Export Adaptor Protein Aly/REF with ICP27 Contributes to the Efficiency of Herpes Simplex Virus 1 mRNA Export. Journal of Virology, 2013, 87, 7210-7217.	1.5	18
35	Molecular Mechanism of SR Protein Kinase 1 Inhibition by the Herpes Virus Protein ICP27. MBio, 2019, 10,	1.8	17
36	The effects of arginine glutamate, a promising excipient for protein formulation, on cell viability: Comparisons with NaCl. Toxicology in Vitro, 2016, 33, 88-98.	1.1	14

#	Article	IF	CITATIONS
37	Detection of the adulteration of fresh coconut water <i>via</i> NMR spectroscopy and chemometrics. Analyst, The, 2019, 144, 1401-1408.	1.7	14
38	Conformational Stability Study of a Therapeutic Peptide Plectasin Using Molecular Dynamics Simulations in Combination with NMR. Journal of Physical Chemistry B, 2019, 123, 4867-4877.	1.2	14
39	Comprehensive Assessment of Protein and Excipient Stability in Biopharmaceutical Formulations Using ¹ H NMR Spectroscopy. ACS Pharmacology and Translational Science, 2021, 4, 288-295.	2.5	14
40	Binding of excipients is a poor predictor for aggregation kinetics of biopharmaceutical proteins. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 151, 127-136.	2.0	13
41	Overlapping motifs on the herpes viral proteins ICP27 and ORF57 mediate interactions with the mRNA export adaptors ALYREF and UIF. Scientific Reports, 2018, 8, 15005.	1.6	12
42	Amino acid residue: is it structural or functional?. FEBS Letters, 1995, 375, 162-166.	1.3	11
43	Structural consequences of site-directed mutagenesis in flexible protein domains. FEBS Journal, 2001, 268, 2253-2260.	0.2	11
44	Simultaneous measurement of residual dipolar couplings for proteins in complex using the isotopically discriminated NMR approach. Journal of the American Chemical Society, 2009, 131, 8564-8570.	6.6	11
45	¹⁹ F Dark-State Exchange Saturation Transfer NMR Reveals Reversible Formation of Protein-Specific Large Clusters in High-Concentration Protein Mixtures. Analytical Chemistry, 2019, 91, 4702-4708.	3.2	11
46	Stability of a high-concentration monoclonal antibody solution produced by liquid–liquid phase separation. MAbs, 2021, 13, 1940666.	2.6	11
47	Temporal and spatial characterisation of protein liquid-liquid phase separation using NMR spectroscopy. Nature Communications, 2022, 13, 1767.	5.8	11
48	Stabilization of Proteins by Enhancement of Inter-residue Hydrophobic Contacts: Lessons of T4 Lysozyme and Barnase. Journal of Biomolecular Structure and Dynamics, 2000, 18, 477-491.	2.0	10
49	¹⁹ F NMR as a Tool for Monitoring Individual Differentially Labeled Proteins in Complex Mixtures. Molecular Pharmaceutics, 2018, 15, 2785-2796.	2.3	10
50	The Effect of Point Mutations on the Biophysical Properties of an Antimicrobial Peptide: Development of a Screening Protocol for Peptide Stability Screening. Molecular Pharmaceutics, 2020, 17, 3298-3313.	2.3	9
51	The ICP27 Homology Domain of the Human Cytomegalovirus Protein UL69 Adopts a Dimer-of-Dimers Structure. MBio, 2018, 9, .	1.8	8
52	Interaction of a Macrocycle with an Aggregation-Prone Region of a Monoclonal Antibody. Molecular Pharmaceutics, 2019, 16, 3100-3108.	2.3	7
53	Solvation of Pristine Graphene Using Amino Acids: A Molecular Simulation and Experimental Analysis. Journal of Physical Chemistry C, 2019, 123, 30234-30244.	1.5	7
54	Detailed Assessment of Spatial Hydrophobic and Electrostatic Properties of 2D NMR-Derived Models of Neurotoxin II. Journal of Biomolecular Structure and Dynamics, 1995, 12, 971-991.	2.0	6

#	Article	IF	CITATIONS
55	In support of the BMRB. Nature Structural and Molecular Biology, 2012, 19, 854-860.	3.6	6
56	A New Method to Characterize Hydrophobic Organization of Proteins: Application to Rational Protein Engineering of Barnase. Journal of Biomolecular Structure and Dynamics, 1998, 15, 673-687.	2.0	5
57	Development of a fast screening method for selecting excipients in formulations using MD simulations, NMR and microscale thermophoresis. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 158, 11-20.	2.0	5
58	Structural identification of conserved RNA binding sites in herpesvirus ORF57 homologs: implications for PAN RNA recognition. Nucleic Acids Research, 2019, 47, 1987-2001.	6.5	4
59	Assignment of 1H, 13C, and 15N resonances for the REF2-I mRNA export factor. Journal of Biomolecular NMR, 2006, 36, 41-41.	1.6	3
60	Assignment of 1H, 13C, and 15N resonances for the PilP pilot protein from Neisseria meningitidis. Journal of Biomolecular NMR, 2006, 36, 68-68.	1.6	3
61	Dynamic studies of H-Ras•GTPγS interactions with nucleotide exchange factor Sos reveal a transient ternary complex formation in solution. Scientific Reports, 2016, 6, 29706.	1.6	3
62	Studies of the oligomerisation mechanism of a cystatin-based engineered protein scaffold. Scientific Reports, 2019, 9, 9067.	1.6	2
63	New Disulphide Bond in Cystatin-Based Protein Scaffold Prevents Domain-Swap-Mediated Oligomerization and Stabilizes the Functionally Active Form. ACS Omega, 2019, 4, 18248-18256.	1.6	2
64	Use of 19 F Differential Labelling for the Simultaneous Detection and Monitoring of Three Individual Proteins in a Serum Environment. ChemPlusChem, 2019, 84, 443-446.	1.3	1