M C Gallego

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6506664/publications.pdf Version: 2024-02-01

M C CALLECO

#	Article	IF	CITATIONS
1	A Revised Collection of Sunspot Group Numbers. Solar Physics, 2016, 291, 3061-3074.	1.0	130
2	REVISITED SUNSPOT DATA: A NEW SCENARIO FOR THE ONSET OF THE MAUNDER MINIMUM. Astrophysical Journal Letters, 2011, 731, L24.	3.0	87
3	Trends in Block-Seasonal Extreme Rainfall over the Iberian Peninsula in the Second Half of the Twentieth Century. Journal of Climate, 2007, 20, 113-130.	1.2	86
4	Trends in frequency indices of daily precipitation over the Iberian Peninsula during the last century. Journal of Geophysical Research, 2011, 116, .	3.3	85
5	Peaks-over-Threshold Study of Trends in Extreme Rainfall over the Iberian Peninsula. Journal of Climate, 2011, 24, 1089-1105.	1.2	80
6	Level and length of cyclic solar activity during the Maunder minimum as deduced from the active-day statistics. Astronomy and Astrophysics, 2015, 577, A71.	2.1	68
7	A 250-year cycle in naked-eye observations of sunspots. Geophysical Research Letters, 2002, 29, 58-1-58-4.	1.5	63
8	The NAO signal in daily rainfall series over the Iberian Peninsula. Climate Research, 2005, 29, 103-109.	0.4	57
9	Comparing historic records of storm frequency and the North Atlantic Oscillation (NAO) chronology for the Azores region. Holocene, 2008, 18, 745-754.	0.9	48
10	Changes in frequency and intensity of daily precipitation over the Iberian Peninsula. Journal of Geophysical Research, 2006, 111, .	3.3	44
11	Early Spanish meteorological records (1780–1850). International Journal of Climatology, 2014, 34, 593-603.	1.5	36
12	The Extreme Space Weather Event in 1903 October/November: An Outburst from the Quiet Sun. Astrophysical Journal Letters, 2020, 897, L10.	3.0	36
13	Sunspot Numbers and Areas from the Madrid Astronomical Observatory (1876 – 1986). Solar Physics, 2014, 289, 4335-4349.	1.0	31
14	The 1870 space weather event: Geomagnetic and auroral records. Journal of Geophysical Research, 2008, 113, .	3.3	30
15	A study of surface ozone variability over the Iberian Peninsula during the last fifty years. Atmospheric Environment, 2011, 45, 1946-1959.	1.9	30
16	A spectral analysis of Iberian Peninsula monthly rainfall. Theoretical and Applied Climatology, 2002, 71, 77-95.	1.3	29
17	Trends in summer extreme temperatures over the Iberian Peninsula using nonurban station data. Journal of Geophysical Research D: Atmospheres, 2014, 119, 39-53.	1.2	29
18	A great space weather event in February 1730. Astronomy and Astrophysics, 2018, 616, A177.	2.1	26

#	Article	IF	CITATIONS
19	Analysis of the precipitation and cloudiness associated with COLs occurrence in the Iberian Peninsula. Meteorology and Atmospheric Physics, 2007, 96, 103-119.	0.9	25
20	Long-Term Trends and Gleissberg Cycles in Aurora Borealis Records (1600 – 2015). Solar Physics, 2016 291, 613-642.	^{5,} 1.0	25
21	Auroras observed in the Iberian Peninsula (1700–1855) from Rico Sinobas' catalogue. Journal of Atmospheric and Solar-Terrestrial Physics, 2003, 65, 677-682.	0.6	24
22	A ?lost? sunspot observation in 1785. Astronomische Nachrichten, 2005, 326, 112-114.	0.6	24
23	A Simple Method to Check the Reliability of Annual Sunspot Number in the Historical Period 1610 – 18 Solar Physics, 2012, 277, 389-395.	347 1.0	24
24	Climatic potential of Islamic chronicles in Iberia: Extreme droughts (ad 711–1010). Holocene, 2014, 24, 370-374.	0.9	23
25	Sunspot Characteristics at the Onset of the Maunder Minimum Based on the Observations of Hevelius. Astrophysical Journal, 2019, 886, 18.	1.6	23
26	Francisco Salvá's auroral observations from Barcelona during 1780–1825. Advances in Space Research, 2010, 45, 1388-1392.	1.2	22
27	Reconstructing past solar activity using meridian solar observations: The case of the Royal Observatory of the Spanish Navy (1833–1840). Advances in Space Research, 2014, 53, 1162-1168.	1.2	22
28	Early meteorological records from Latin-America and the Caribbean during the 18th and 19th centuries. Scientific Data, 2017, 4, 170169.	2.4	21
29	A Measure of the Solar Rotation During the Maunder Minimum. Solar Physics, 2002, 207, 219-222.	1.0	20
30	Sunspot numbers during 1736–1739 revisited. Advances in Space Research, 2007, 40, 1895-1903.	1.2	20
31	The climate in Zafra from 1750 to 1840: precipitation. Climatic Change, 2015, 129, 267-280.	1.7	20
32	Reconstruction of a Monthly Homogeneous Sunspot Area Series Since 1832. Solar Physics, 2004, 221, 179-189.	1.0	19
33	Multi-day rainfall trends over the Iberian Peninsula. Theoretical and Applied Climatology, 2012, 108, 411-423.	1.3	19
34	Sunspot Observations Made by Hallaschka During the Dalton Minimum. Solar Physics, 2018, 293, 1.	1.0	19
35	Two Early Sunspots Observers: Teodoro de Almeida and Jos $ ilde{A}$ © Antonio Alzate. Solar Physics, 2007, 240, 165-175.	1.0	18
36	Sunspot Catalogue of the Valencia Observatory (1920 – 1928). Solar Physics, 2014, 289, 4351-4364.	1.0	18

#	Article	IF	CITATIONS
37	The Umbra–Penumbra Area Ratio of Sunspots During the Maunder Minimum. Astrophysical Journal, 2018, 865, 88.	1.6	18
38	Two debatable cases for the reconstruction of the solar activity around the Maunder Minimum: Malapert and Derham. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 485, L53-L57.	1.2	18
39	Number of sunspot groups from the Galileo–Scheiner controversy revisited. Monthly Notices of the Royal Astronomical Society, 2020, 496, 2482-2492.	1.6	18
40	On the Reliability of the de la rue Sunspot Area Measurements. Solar Physics, 2002, 209, 311-319.	1.0	17
41	Extreme Value Theory Applied to the Millennial Sunspot Number Series. Astrophysical Journal, 2018, 853, 80.	1.6	17
42	Strong evidence of low levels of solar activity during the Maunder Minimum. Monthly Notices of the Royal Astronomical Society, 2021, 504, 5199-5204.	1.6	17
43	The meteorological observations of Bento Sanches Dorta, Rio de Janeiro, Brazil: 1781–1788. Climatic Change, 2012, 115, 579-595.	1.7	16
44	How useful could Arabic documentary sources be for reconstructing past climate?. Weather, 2012, 67, 76-82.	0.6	16
45	Forty two years counting spots: Solar observations by D.E. Hadden during 1890–1931 revisited. New Astronomy, 2013, 25, 95-102.	0.8	16
46	An Early Sunspot Catalog by Miguel Aguilar for the Period 1914 – 1920. Solar Physics, 2016, 291, 2609-2628.	1.0	16
47	A Curious History of Sunspot Penumbrae: An Update. Solar Physics, 2018, 293, 1.	1.0	16
48	Sunspot Catalogue of the Observatory of the University of Coimbra (1929 – 1941). Solar Physics, 201 293, 1.	⁸ 1.0	15
49	A Limit for the Values of the <i>Dst</i> Geomagnetic Index. Geophysical Research Letters, 2018, 45, 9435-9440.	1.5	15
50	Equivalence Relations Between the Cortie and Zürich Sunspot Group Morphological Classifications. Solar Physics, 2015, 290, 1445-1455.	1.0	14
51	The climate in Zafra from 1750 to 1840: history and description of weather observations. Climatic Change, 2014, 126, 107-118.	1.7	13
52	Characterization Of Atmospheric Turbulence By Dynamical Systems Techniques. Boundary-Layer Meteorology, 2001, 100, 375-392.	1.2	12
53	The proposed "Waldmeier discontinuity― How does it affect to sunspot cycle characteristics?. Journal of Space Weather and Space Climate, 2012, 2, A12.	1.1	12
54	Long-term Spatial and Temporal Variations of Aurora Borealis Events in the Period 1700 – 1905. Solar Physics, 2014, 289, 1843-1861.	1.0	12

IF # ARTICLE CITATIONS A Normalized Sunspot-Area Series Starting in 1832: An Update. Solar Physics, 2016, 291, 2931-2940. Extreme Value Theory and the New Sunspot Number Series. Astrophysical Journal, 2017, 839, 98. 56 12 1.6 Non-stationary future return levels for extreme rainfall over Extremadura (southwestern Iberian) Tj ETQq1 1 0.784314 rgBT /Qyerlock Sporadic aurora from Spain. Earth, Planets and Space, 2007, 59, e49-e51. 58 0.9 11 Spanish eyewitness accounts of the great space weather event of 1859. Acta Geodaetica Et Geophysica 0.4 Hungarica, 2011, 46, 370-377. The First Documented Space Weather Event That Perturbed the Communication Networks in Iberia. 60 1.3 11 Space Weather, 2016, 14, 464-468. The climate in Zafra from 1750 to 1840: temperature indexes from documentary sources. Climatic 1.7 Change, 2017, 141, 671-684. Sunspot numbers can detect pandemic influenza A: The use of different sunspot numbers. Medical 62 0.8 10 Hypotheses, 2007, 68, 1189-1190. The New Sunspot-Number Index and Solar-Cycle Characteristics. Solar Physics, 2016, 291, 3045-3060. 1.0 Soonspot: Software to Determine Areas and Sunspot Positions. Solar Physics, 2020, 295, 1. 1.0 10 64 <i>Letter to the Editor</i>Two early observations of aurora at low latitudes. Annales 0.6 10 Geophysicae, 2001, 19, 809-811. A Note on Solar Cycle Length Estimates. Solar Physics, 2006, 235, 433-437. 1.0 66 9 Monitoring the Solar Radius from the Royal Observatory of the Spanish Navy since 1773. Solar Physics, 1.0 2016, 291, 1599-1612. A possible case of Sporadic Aurora in 1843 from Mexico. Geofisica International, 2013, 52, 87-92. 68 0.2 8 A Sunspot Catalog for the Period 1952 – 1986 from Observations Made at the Madrid Astronomical 69 1.0 Observatory. Solar Physics, 2018, 293, 1. Re-evaluation of trends in atmospheric column transparency from pyrheliometer measurements in 70 1.8 8 Madrid (1910–1929). Atmospheric Research, 2019, 217, 165-171. Revisiting Christoph Scheiner's Sunspot Records: A New Perspective on Solar Activity of the Early 71 1.6 Telescopic Era. Astrophysical Journal, 2022, 927, 193. Sunspot observations by Charles Malapert during the period 1618–1626: a key data set to understand 72 solar activity before the Maunder minimum. Monthly Notices of the Royal Astronomical Society, 2019, 7 1.6 488, 3884-3895.

#	Article	IF	CITATIONS
73	Analysis of actinometric measurements under all-sky and cloud-free conditions in Cáceres (Spain) for the period 1913–1920. Tellus, Series B: Chemical and Physical Meteorology, 2022, 71, 1663597.	0.8	7

Analyses of Early Sunspot Records by Jean Tarde (1615 – 1617) and Jan Smogulecki (1621 – 1625). Solar Physics, 2021, 296, 1.

75	Aurorae observed by Giuseppe Toaldo in Padua (1766–1797). Journal of Space Weather and Space Climate, 2016, 6, A21.	1.1	6
76	Sunspots sketches during the solar eclipses of 9th January and 29th December of 1777 in Mexico. Journal of Space Weather and Space Climate, 2017, 7, A15.	1.1	6
77	Relationship between solar activity and direct solar irradiance in Madrid (1910–1929). Atmospheric Research, 2020, 235, 104766.	1.8	6
78	Revisiting the Amplitude of Solar Cycle 9: The Case of Sunspot Observations by W.C. Bond. Solar Physics, 2020, 295, 1.	1.0	6
79	Sunshine duration data in San Fernando (South of Spain) during 1880s: The impact of Krakatoa volcanic eruption. Geoscience Data Journal, 2020, 7, 185-191.	1.8	6
80	A Reanalysis of the Number of Sunspot Groups Recorded by Pierre Gassendi in the Cycle Before the Maunder Minimum. Solar Physics, 2021, 296, 1.	1.0	6
81	A forgotten sunspot record during the Maunder Minimum (Jean Charles Gallet, 1677). Publication of the Astronomical Society of Japan, 2021, 73, 747-752.	1.0	6
82	Hemispheric Sunspot Number from the Madrid Astronomical Observatory for the Period 1935–1986. Astrophysical Journal, 2022, 931, 52.	1.6	6
83	155-day Periodicity in solar cycles 3 and 4. New Astronomy, 2010, 15, 385-391.	0.8	5
84	The Hidden Role of Women in Monitoring Nineteenth-Century African Weather: Instrumental Observations in Equatorial Guinea. Bulletin of the American Meteorological Society, 2011, 92, 315-324.	1.7	5
85	Sunspot and Group Number: Recent advances from historical data. Proceedings of the International Astronomical Union, 2018, 14, 156-159.	0.0	5
86	Pro-Pluvia Rogation Ceremonies in Extremadura (Spain): Are They a Good Proxy of Winter NAO?. Atmosphere, 2020, 11, 282.	1.0	5
87	The catastrophic floods in the Guadiana River basin since 1500 CE. Science of the Total Environment, 2021, 797, 149141.	3.9	5
88	An old apparatus for physics teaching: Escriche's pendulum. Physics Teacher, 2000, 38, 424-425.	0.2	4
89	Solar Rotation During the Period 1847 – 1849. Solar Physics, 2010, 261, 1-9.	1.0	4
90	A small collection of sunspot drawings made in the Royal Astronomical Observatory of the Spanish Navy in 1884. Advances in Space Research, 2016, 58, 2247-2254.	1.2	4

#	Article	IF	CITATIONS
91	Could a Hexagonal Sunspot Have Been Observed During the Maunder Minimum?. Solar Physics, 2018, 293, 1.	1.0	4
92	Twelve Years of Daily Weather Descriptions in North America in the Eighteenth Century (Mexico City,) Tj ETQo	/ 0 0 0 rgBT ا	Overlock 10 T

93	Heavy Rainfall and Landslide Event in January 1831 at the Pedregoso Mountains (Cabeza Del Buey, SW) Tj ETQq1	1,0,78432 1,0	14 rgBT /O
94	On the Use of Naked-eye Sunspot Observations during the Maunder Minimum. Astrophysical Journal, 2020, 904, 60.	1.6	4
95	A Sunspot Catalog by Rafael Carrasco at the Madrid Astronomical Observatory for the Period 1931 – 1933. Solar Physics, 2022, 297, .	1.0	4
96	The first meteorological observations at a tropical high elevation site: Antisana, 1846. Journal of Mountain Science, 2016, 13, 1047-1055.	0.8	3
97	Analysing Spotless Days as Predictors of Solar Activity from the New Sunspot Number. Solar Physics, 2017, 292, 1.	1.0	3
98	Recovery of early meteorological records from Extremadura region (SW Iberia): The â€~CliPastExtrem' (v1.0) database. Geoscience Data Journal, 2022, 9, 207-220.	1.8	3
99	Relationship between the Sunspot Number and Active Day Fraction: An Application for the Maunder Minimum. Astrophysical Journal, 2022, 933, 26.	1.6	3
100	A measurement of Teide height in 1776. European Journal of Physics, 1999, 20, 321-325.	0.3	2
101	Periodicities of the de la rue Sunspot Area Measurements. Solar Physics, 2003, 218, 307-317.	1.0	2
102	A CRITICAL COMMENT ON THE CLAIMED RELATION BETWEEN THE SOLAR MAXIMUM AMPLITUDE AND MAX-MAX CYCLE LENGTH. Astronomical Journal, 2012, 144, 69.	1.9	2
103	Extreme Value Theory Applied to the Daily Solar Radio Flux at 10.7 cm. Solar Physics, 2019, 294, 1.	1.0	2
104	Sunspot Records by Antonio Colla Just After the Dalton Minimum. Solar Physics, 2020, 295, 1.	1.0	2
105	Sunspot Catalog (1921–1935) and Area Series (1886–1940) from the Stonyhurst College Observatory. Astrophysical Journal, Supplement Series, 2021, 256, 38.	3.0	2
106	Revisiting the prediction of solar activity based on the relationship between the solar maximum amplitude and max–max cycle length. Advances in Space Research, 2017, 59, 379-383.	1.2	1
107	Analysis of Solar Diameter Measurements Made at the Basilica of San Petronio during and after the Maunder Minimum. Astrophysical Journal, 2021, 912, 122.	1.6	1
108	Dating historical droughts from religious ceremonies, the international pro pluvia rogation database. Scientific Data, 2021, 8, 186.	2.4	1

#	Article	IF	CITATIONS
109	Multi-day rainfall trends over the Iberian Peninsula. , 2012, 108, 411.		1
110	An observation of parhelia and a halo at Valencia (Spain) in 1689. Weather, 1999, 54, 141-143.	0.6	0
111	An antique empirical rule for the calculation of height from barometric measurements. Weather, 2000, 55, 415-417.	0.6	0
112	Applying elementary statics to a historical anemometer. Physics Education, 2000, 35, 124-125.	0.3	0
113	A note on some measurements of geomagnetic declination in 1776 and 1778. Physics of the Earth and Planetary Interiors, 2005, 152, 62-66.	0.7	0
114	The First Known Instrumental Meteorological Observations in Extremadura (Spain): Badajoz (1830). , 2001, , 43-52.		0
115	Sobre los cometas en el Rawá,•al-qirá¹Ã¢s . Al-Qantara, 2000, 21, 221.	0.1	0
116	The tornado of Talavera de la Reina on 3 September 1880. , 0, , .		0