Junming Wan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6506321/publications.pdf

Version: 2024-02-01

430754 454834 45 960 18 30 citations h-index g-index papers 45 45 45 1369 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Stretchable, self-healing, conductive hydrogel fibers for strain sensing and triboelectric energy-harvesting smart textiles. Nano Energy, 2020, 78, 105389.	8.2	186
2	Enhanced photocatalytic degradation activity over TiO 2 nanotubes co-sensitized by reduced graphene oxide and copper(II) meso -tetra(4-carboxyphenyl)porphyrin. Applied Surface Science, 2016, 377, 149-158.	3.1	62
3	Synthesis of polymer-functionalized nanoscale graphene oxide with different surface charge and its cellular uptake, biosafety and immune responses in Raw264.7 macrophages. Materials Science and Engineering C, 2018, 90, 514-522.	3.8	53
4	Review of Graphene-Based Textile Strain Sensors, with Emphasis on Structure Activity Relationship. Polymers, 2021, 13, 151.	2.0	44
5	Ternary composites of TiO2 nanotubes with reduced graphene oxide (rGO) and meso-tetra (4-carboxyphenyl) porphyrin for enhanced visible light photocatalysis. International Journal of Hydrogen Energy, 2016, 41, 14692-14703.	3.8	38
6	Preparation, characterization and visible-light-driven photocatalytic activity of a novel Fe(III) porphyrin-sensitized TiO 2 nanotube photocatalyst. Applied Surface Science, 2017, 391, 267-274.	3.1	38
7	The visible light degradation activity and the photocatalytic mechanism of tetra(4-carboxyphenyl) porphyrin sensitized TiO2. Materials Research Bulletin, 2014, 57, 311-319.	2.7	37
8	MoS ₂ quantum dots@TiO ₂ nanotube composites with enhanced photoexcited charge separation and high-efficiency visible-light driven photocatalysis. Nanotechnology, 2018, 29, 105403.	1.3	37
9	pH and Thermal Dual-Responsive Graphene Oxide Nanocomplexes for Targeted Drug Delivery and Photothermal-Chemo/Photodynamic Synergetic Therapy. ACS Applied Bio Materials, 2019, 2, 5859-5871.	2.3	35
10	Stretchable energy storage E-skin supercapacitors and body movement sensors. Sensors and Actuators B: Chemical, 2020, 305, 127529.	4.0	33
11	Stretchable multi-luminescent fibers with AlEgens. Journal of Materials Chemistry C, 2019, 7, 10769-10776.	2.7	30
12	Bimetallic Porphyrin MOF Anchored onto rGO Nanosheets as a Highly Efficient 2D Electrocatalyst for Oxygen Evolution Reaction in Alkaline Conditions. ChemistrySelect, 2019, 4, 8661-8670.	0.7	29
13	Preparation of the MoS2/TiO2/HMFs ternary composite hollow microfibres with enhanced photocatalytic performance under visible light. Journal of Colloid and Interface Science, 2017, 502, 100-111.	5.0	23
14	pHâ€Responsive Nanoparticles Loaded with Graphene Quantum Dots and Doxorubicin for Intracellular Imaging, Drug Delivery and Efficient Cancer Therapy. ChemistrySelect, 2019, 4, 6004-6012.	0.7	22
15	Electromagnetic shielding, resistance temperature-sensitive behavior, and decoupling of interfacial electricity for reduced graphene oxide paper. Journal of Alloys and Compounds, 2021, 882, 160756.	2.8	22
16	Silk fibroin fibers supported with high density of gold nanoparticles: fabrication and application as catalyst. Gold Bulletin, 2011, 44, 171-176.	1.1	20
17	Flexible Humidity Sensitive Fiber with Swellable Metal–Organic Frameworks. Advanced Fiber Materials, 2021, 3, 107-116.	7.9	20
18	Efficient hydrogen evolution and rapid degradation of organic pollutants by robust catalysts of MoS2/TNT@CNTs. International Journal of Hydrogen Energy, 2018, 43, 16024-16037.	3.8	19

#	Article	IF	CITATIONS
19	Doxorubicin-loaded pH-responsive nanoparticles coated with chlorin e6 for drug delivery and synergetic chemo-photodynamic therapy. Nanotechnology, 2020, 31, 195103.	1.3	19
20	Synthesis, electron transfer and photocatalytic activity of TiO2 nanotubes sensitized by meso-tetra(4-carboxyphenyl)porphyrin under visible-light irradiation. RSC Advances, 2015, 5, 58184-58190.	1.7	17
21	Morphology evolution and visible light driven photocatalysis study of Ti3+ self-doped TiO2â^'x nanocrystals. Journal of Materials Research, 2017, 32, 1563-1572.	1.2	17
22	The photocatalytic activity and degradation mechanism of methylene blue over copper(<scp>ii</scp>) tetra(4-carboxyphenyl) porphyrin sensitized TiO ₂ under visible light irradiation. RSC Advances, 2014, 4, 28978-28986.	1.7	16
23	Preparation of superlong TiO2 nanotubes and reduced graphene oxide composite photocatalysts with enhanced photocatalytic performance under visible light irradiation. Journal of Materials Science: Materials in Electronics, 2017, 28, 14769-14776.	1.1	15
24	Versatile Nanoplatform Loaded with Doxorubicin and Graphene Quantum Dots/Methylene Blue for Drug Delivery and Chemophotothermal/Photodynamic Synergetic Cancer Therapy. ACS Applied Bio Materials, 2020, 3, 7122-7132.	2.3	15
25	Smart fabric strain sensor comprising reduced graphene oxide with structure-based negative piezoresistivity. Journal of Materials Science, 2021, 56, 16946-16962.	1.7	13
26	Tailored monoclonal antibody as recognition probe of immunosensor for ultrasensitive detection of silk fibroin and use in the study of archaeological samples. Biosensors and Bioelectronics, 2019, 145, 111709.	5. 3	12
27	Photoinduced interfacial charge transfer and photocatalytic behavior of TiO2 nanotubes sensitized by copper (II) meso-tetra (4-carboxyphenyl) porphyrin. Journal of Materials Science: Materials in Electronics, 2016, 27, 4026-4034.	1.1	11
28	Interactions between rGO/TNT nanocomposites and cells: Regulation of cell morphology, uptake, cytotoxicity, adhesion and migration. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 77, 510-518.	1.5	10
29	Adsorption and photocatalytic behavior of titanate nanotubes sensitized with zinc tetra(4-carboxyphenyl) porphyrin. RSC Advances, 2015, 5, 33570-33578.	1.7	9
30	Fabrication and interfacial electron transfer of ultrathin g-C3N4 nanosheet/TNT@CNTs ternary nanostructure heterojunction for high-efficiency visible-light-driven photocatalysis. Journal of Materials Science: Materials in Electronics, 2018, 29, 8673-8687.	1.1	9
31	Transparent, Stretchable and Direct Skin-Touchable Multi-Functional Electronic Skin Sensors. Journal of the Electrochemical Society, 2018, 165, B924-B930.	1.3	8
32	Fabrication of 1D long chain-like metal porphyrin-based coordination complexes for high-efficiency hydrogen evolution and photoelectric response. International Journal of Hydrogen Energy, 2019, 44, 18072-18082.	3.8	7
33	Electric heating behavior of flexible knitted fabrics comprising reduced graphene oxide, with emphasis on resistance temperature-sensitive behavior and decoupling of contact resistance. Journal of Industrial Textiles, 2022, 51, 3131S-3148S.	1.1	7
34	ZFP+PU/PVDF composite fibers based on ZnS:Cu phosphors for low temperature lighting monitoring sensor devices. Journal of Luminescence, 2021, 239, 118303.	1.5	6
35	The aging effect of CaCl ₂ and NaCl on wool fabrics with hydrothermal treatment. Textile Reseach Journal, 2017, 87, 399-408.	1.1	4
36	Preparation and high-efficient hydrogen evolution reaction of hydrangea-like MoS2 hollow microspheres modified by needle-like g-C3N4. Journal of Materials Science: Materials in Electronics, 2019, 30, 16446-16451.	1.1	3

#	Article	IF	CITATIONS
37	A CdS quantum dots-sensitized porphyrin-based MOFs for hydrogen evolution reaction in acid media. Journal of Materials Science: Materials in Electronics, 2020, 31, 21214-21221.	1.1	3
38	Purification of organic pollutant by the novel ternary complex. Journal of Materials Science: Materials in Electronics, 2016, 27, 10905-10910.	1.1	2
39	A alkalescent route for synthesis of titanate nanosheets modified with reduced graphene oxide for enhanced photocatalytic activity. Journal of Materials Science: Materials in Electronics, 2017, 28, 7976-7984.	1.1	2
40	Application of Electron Paramagnetic Resonance and Solid-state ¹³ C Nuclear Magnetic Resonance of Cross-polarization/Magic Angle Spinning to Study Enzymatic Degradation of Silk Fabrics. Analytical Sciences, 2017, 33, 579-583.	0.8	2
41	Visible‣ight Response and Highâ€Efficiency Photocatalytic Elimination of Polycyclic Organic Pollutants of Layerâ€By‣ayer Assembled Ternary Nanotubular Catalysts. ChemistrySelect, 2018, 3, 11414-11421.	0.7	2
42	Highâ∈Efficient Visibleâ∈Light Response and Photoelectrochemical Performance of Nanotubeâ∈Sheet Composite Fabricated by Ultrathin Porphyrin Nanosheet and TiO ₂ Nanotubes. ChemistrySelect, 2019, 4, 941-949.	0.7	1
43	Fabrication, photoelectrochemical and electrocatalytic activity of 1D linear Co(â¡) and Fe(â¢) TPP-based coordination compounds. International Journal of Hydrogen Energy, 2020, 45, 9328-9341.	3.8	1
44	Hydrogen Evolution and Wastewater Treatment of Hydrangealâ€like Catalyst Decroatedby the NiS Nanosheet and PdNanoparticle. ChemistrySelect, 2020, 5, 1041-1046.	0.7	1
45	Nanoarchitectured Graphene Organic Framework for Drug Delivery and Chemo-photothermal Synergistic Therapy. Journal of Biomaterials Applications, 0, , 088532822211084.	1.2	0