## Terry W Moody

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/650611/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Bombesin-like peptides can function as autocrine growth factors in human small-cell lung cancer.<br>Nature, 1985, 316, 823-826.                                                         | 27.8 | 1,337     |
| 2  | Adrenomedullin Expression in Human Tumor Cell Lines ITS POTENTIAL ROLE AS AN AUTOCRINE GROWTH FACTOR. Journal of Biological Chemistry, 1996, 271, 23345-23351.                          | 3.4  | 274       |
| 3  | Inhibition of Wnt-2-mediated signaling induces programmed cell death in non-small-cell lung cancer cells. Oncogene, 2004, 23, 6170-6174.                                                | 5.9  | 248       |
| 4  | Autoradiographic distribution of substance P receptors in rat central nervous system. Nature, 1983, 303, 714-716.                                                                       | 27.8 | 231       |
| 5  | I. High affinity receptors for bombesin/GRP-like peptides on human small cell lung cancer. Life<br>Sciences, 1985, 37, 105-113.                                                         | 4.3  | 231       |
| 6  | Fiveâ€lipoxygenase inhibitors can mediate apoptosis in human breast cancer cell lines through complex eicosanoid interactions. FASEB Journal, 2001, 15, 2007-2009.                      | 0.5  | 181       |
| 7  | Bombesin-related peptides and their receptors: recent advances in their role in physiology and disease states. Current Opinion in Endocrinology, Diabetes and Obesity, 2008, 15, 58-64. | 2.3  | 179       |
| 8  | Bombesin: Receptor distribution in brain and effects on nociception and locomotor activity. Brain Research, 1980, 193, 209-220.                                                         | 2.2  | 170       |
| 9  | Bombesin-like peptides in rat brain: Quantitation and biochemical characterization. Biochemical and<br>Biophysical Research Communications, 1979, 90, 7-14.                             | 2.1  | 150       |
| 10 | HIV envelope protein-induced neuronal damage and retardation of behavioral development in rat neonates. Brain Research, 1993, 603, 222-233.                                             | 2.2  | 130       |
| 11 | Bombesin Receptor-Mediated Imaging and Cytotoxicity: Review and Current Status. Current Drug Delivery, 2011, 8, 79-134.                                                                 | 1.6  | 128       |
| 12 | Expression of Adrenomedullin and Its Receptor in Normal and Malignant Human Skin: A Potential<br>Pluripotent Role in the Integument. Endocrinology, 1997, 138, 5597-5604.               | 2.8  | 120       |
| 13 | Bombesin-like peptides and associated receptors within the brain: distribution and behavioral implications. Peptides, 2004, 25, 511-520.                                                | 2.4  | 112       |
| 14 | Neuropeptides as Autocrine Growth Factors in Cancer Cells. Current Pharmaceutical Design, 2003, 9,<br>495-509.                                                                          | 1.9  | 110       |
| 15 | Alterations in rat central nervous system endorphins following transauricular electroacupuncture.<br>Brain Research, 1981, 224, 83-93.                                                  | 2.2  | 107       |
| 16 | The Effects of Adrenomedullin Overexpression in Breast Tumor Cells. Journal of the National Cancer<br>Institute, 2002, 94, 1226-1237.                                                   | 6.3  | 103       |
| 17 | Bombesin-like peptides and receptors in human tumor cell lines. Peptides, 1983, 4, 683-686.                                                                                             | 2.4  | 98        |
| 18 | VIP as a trophic factor in the CNS and cancer cells. Peptides, 2003, 24, 163-177.                                                                                                       | 2.4  | 93        |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Bombesin related peptides/receptors and their promising therapeutic roles in cancer imaging,<br>targeting and treatment. Expert Opinion on Therapeutic Targets, 2016, 20, 1055-1073.                                       | 3.4 | 92        |
| 20 | Insights into bombesin receptors and ligands: Highlighting recent advances. Peptides, 2015, 72, 128-144.                                                                                                                   | 2.4 | 90        |
| 21 | Vasoactive intestinal peptide/pituitary adenylate cyclase activating polypeptide, and their receptors and cancer. Current Opinion in Endocrinology, Diabetes and Obesity, 2016, 23, 38-47.                                 | 2.3 | 89        |
| 22 | Bombesin-like peptides in rat brain: Localization in synaptosomes and release from hypothalamic slices.<br>Life Sciences, 1980, 26, 1707-1712.                                                                             | 4.3 | 88        |
| 23 | Growth factor and peptide receptors in small cell lung cancer. Life Sciences, 1993, 52, 1161-1173.                                                                                                                         | 4.3 | 83        |
| 24 | VIP and PACAP: recent insights into their functions/roles in physiology and disease from molecular and genetic studies. Current Opinion in Endocrinology, Diabetes and Obesity, 2011, 18, 61-67.                           | 2.3 | 82        |
| 25 | Autoradiographic visualization of CNS receptors for vasoactive intestinal peptide. Peptides, 1986, 7, 283-288.                                                                                                             | 2.4 | 78        |
| 26 | Distribution of bombesin binding sites in the rat gastrointestinal tract. Peptides, 1988, 9, 643-649.                                                                                                                      | 2.4 | 76        |
| 27 | Detection of adrenomedullin, a hypotensive peptide, in amniotic fluid and fetal membranes. American<br>Journal of Obstetrics and Gynecology, 1996, 175, 906-911.                                                           | 1.3 | 75        |
| 28 | Development of High Affinity Camptothecin-Bombesin Conjugates That Have Targeted Cytotoxicity for<br>Bombesin Receptor-containing Tumor Cells. Journal of Biological Chemistry, 2004, 279, 23580-23589.                    | 3.4 | 73        |
| 29 | Bombesin-like peptides in small cell lung cancer: Biochemical characterization and secretion from a cell line. Life Sciences, 1983, 32, 487-493.                                                                           | 4.3 | 71        |
| 30 | Bombesin-like peptides elevate cytosolic calcium in small cell lung cancer cells. Biochemical and<br>Biophysical Research Communications, 1987, 147, 189-195.                                                              | 2.1 | 69        |
| 31 | Bombesin-like peptides in rat spinal cord: Biochemical characterization, localization and mechanism of release. Life Sciences, 1981, 29, 2273-2279.                                                                        | 4.3 | 66        |
| 32 | Distribution and origin of bombesin, substance P and somatostatin in cat spinal cord. Peptides, 1983, 4,<br>673-681.                                                                                                       | 2.4 | 66        |
| 33 | Increased Expression of Insulin-Like Growth Factor I and/or Its Receptor in Gastrinomas Is Associated with Low Curability, Increased Growth, and Development of Metastases. Clinical Cancer Research, 2005, 11, 3233-3242. | 7.0 | 66        |
| 34 | Biochemical characterization and autoradiographic localization of central substance P receptors using [1251]physalaemin. Brain Research, 1985, 332, 299-307.                                                               | 2.2 | 63        |
| 35 | Biochemical and histochemical characterization of ranatensin immunoreactive peptides in rat brain:<br>Lack of coexistence with bombesin/GRP. Brain Research, 1985, 338, 97-113.                                            | 2.2 | 57        |
| 36 | Gastrin-releasing peptide (GRP) induces angiogenesis and the specific GRP blocker 77427 inhibits tumor growth in vitro and in vivo. Oncogene, 2005, 24, 4106-4113.                                                         | 5.9 | 55        |

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The Role of Gastrin and CCK Receptors in Pancreatic Cancer and other Malignancies. International<br>Journal of Biological Sciences, 2016, 12, 283-291.                                                                                   | 6.4 | 53        |
| 38 | Prostaglandin E2 and vasoactive intestinal peptide increase vascular endothelial cell growth factor mRNAs in lung cancer cells. Lung Cancer, 2001, 31, 203-212.                                                                          | 2.0 | 52        |
| 39 | Neuromedin B receptors regulate EGF receptor tyrosine phosphorylation in lung cancer cells.<br>European Journal of Pharmacology, 2010, 637, 38-45.                                                                                       | 3.5 | 51        |
| 40 | SR48692 is a neurotensin receptor antagonist which inhibits the growth of small cell lung cancer cells. Peptides, 2001, 22, 109-115.                                                                                                     | 2.4 | 50        |
| 41 | In Vitro and in Vivo Antitumor Effects of Cytotoxic Camptothecin-Bombesin Conjugates Are Mediated by Specific Interaction with Cellular Bombesin Receptors. Journal of Pharmacology and Experimental Therapeutics, 2006, 318, 1265-1272. | 2.5 | 50        |
| 42 | Neurotensin is produced by and secreted from classic small cell lung cancer cells. Life Sciences, 1985, 36, 1727-1732.                                                                                                                   | 4.3 | 49        |
| 43 | Autoradiographic visualization of rat brain binding sites for bombesin-like peptides. European Journal of Pharmacology, 1983, 87, 163-164.                                                                                               | 3.5 | 48        |
| 44 | High affinity binding of cholecystokinin to small cell lung cancer cells. Peptides, 1987, 8, 103-107.                                                                                                                                    | 2.4 | 48        |
| 45 | VIP receptor antagonists and chemotherapeutic drugs inhibit the growth of breast cancer cells.<br>Breast Cancer Research and Treatment, 2001, 68, 55-64.                                                                                 | 2.5 | 47        |
| 46 | Sigma receptors are expressed in human non-small cell lung carcinoma. Life Sciences, 1995, 56,<br>2385-2392.                                                                                                                             | 4.3 | 46        |
| 47 | High affinity binding of VIP to human lung cancer cell lines. Peptides, 1987, 8, 1101-1106.                                                                                                                                              | 2.4 | 45        |
| 48 | Pituitary adenylate cyclase activating polypeptide receptors are present on small cell lung cancer cells. Peptides, 1993, 14, 241-246.                                                                                                   | 2.4 | 45        |
| 49 | Vasoactive Intestinal Peptide Receptors: A Molecular Target in Breast and Lung Cancer. Current<br>Pharmaceutical Design, 2007, 13, 1099-1104.                                                                                            | 1.9 | 45        |
| 50 | Characterization of putative GRP- and NMB-receptor antagonist's interaction with human receptors.<br>Peptides, 2009, 30, 1473-1486.                                                                                                      | 2.4 | 43        |
| 51 | Neuropeptide G Protein-Coupled Receptors as Oncotargets. Frontiers in Endocrinology, 2018, 9, 345.                                                                                                                                       | 3.5 | 43        |
| 52 | Monoclonal antibody αIR-3 inhibits non-small cell lung cancer growth in vitro and in vivo. Journal of<br>Cellular Biochemistry, 1996, 63, 269-275.                                                                                       | 2.6 | 42        |
| 53 | Pituitary Adenylate Cyclase-Activating Polypeptide Causes Tyrosine Phosphorylation of the Epidermal<br>Growth Factor Receptor in Lung Cancer Cells. Journal of Pharmacology and Experimental<br>Therapeutics, 2012, 341, 873-881.        | 2.5 | 42        |
| 54 | (Arg15, Arg21) VIP: Evaluation of Biological Activity and Localization to Breast Cancer Tumors.<br>Peptides, 1998, 19, 585-592.                                                                                                          | 2.4 | 41        |

| #  | Article                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A structure–function study of PACAP using conformationally restricted analogs: Identification of PAC1 receptor-selective PACAP agonists. Peptides, 2015, 66, 26-42.             | 2.4 | 41        |
| 56 | Expression of Adrenomedullin and Its Receptor in Normal and Malignant Human Skin: A Potential Pluripotent Role in the Integument. Endocrinology, 1997, 138, 5597-5604.          | 2.8 | 39        |
| 57 | Neuromedin B-like peptides in rat brain: Biochemical characterization, mechanism of release and localization in synaptosomes. Peptides, 1986, 7, 815-820.                       | 2.4 | 38        |
| 58 | Substance P analogues function as bombesin receptor antagonists and inhibit small cell lung cancer clonal growth. Peptides, 1988, 9, 1367-1372.                                 | 2.4 | 38        |
| 59 | Nonpeptide gastrin releasing peptide receptor antagonists inhibit the proliferation of lung cancer cells. European Journal of Pharmacology, 2003, 474, 21-29.                   | 3.5 | 38        |
| 60 | Cholecystokinin elevates cytosolic calcium in small cell lung cancer cells. Biochemical and<br>Biophysical Research Communications, 1989, 163, 605-610.                         | 2.1 | 37        |
| 61 | PACAP (6–38) is a PACAP receptor antagonist for breast cancer cells. Breast Cancer Research and<br>Treatment, 1999, 56, 175-184.                                                | 2.5 | 37        |
| 62 | Dithiolethione modified valproate and diclofenac increase E-cadherin expression and decrease proliferation of non-small cell lung cancer cells. Lung Cancer, 2010, 68, 154-160. | 2.0 | 35        |
| 63 | Peptides and growth factors in non-small cell lung cancer. Peptides, 1996, 17, 545-555.                                                                                         | 2.4 | 34        |
| 64 | A lipophilic vasoactive intestinal peptide analog enhances the antiproliferative effect of chemotherapeutic agents on cancer cell lines. Cancer, 2001, 92, 2172-2180.           | 4.1 | 33        |
| 65 | EGFR Transactivation by Peptide G Protein-Coupled Receptors in Cancer. Current Drug Targets, 2016, 17, 520-528.                                                                 | 2.1 | 33        |
| 66 | Neurotensin binds with high affinity to small cell lung cancer cells. Peptides, 1988, 9, 57-61.                                                                                 | 2.4 | 31        |
| 67 | Bombesin receptor subtype-3 agonists stimulate the growth of lung cancer cells and increase EGF receptor tyrosine phosphorylation. Peptides, 2011, 32, 1677-1684.               | 2.4 | 31        |
| 68 | Neurotensin elevates cytosolic calcium in small cell lung cancer cells. Peptides, 1989, 10, 1217-1221.                                                                          | 2.4 | 30        |
| 69 | VIP-ellipticine derivatives inhibit the growth of breast cancer cells. Life Sciences, 2002, 71, 1005-1014.                                                                      | 4.3 | 29        |
| 70 | CCK antagonists interact with CCK-B receptors on human small cell lung cancer cells. Peptides, 1990, 11, 1033-1036.                                                             | 2.4 | 28        |
| 71 | Neurotensin causes tyrosine phosphorylation of focal adhesion kinase in lung cancer cells. European<br>Journal of Pharmacology, 2002, 442, 179-186.                             | 3.5 | 28        |
| 72 | Autoradiographic localization of neuromedin B binding sites in rat brain. Molecular and Cellular<br>Neurosciences, 1990, 1, 161-167.                                            | 2.2 | 27        |

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Nonpeptide neuromedin B receptor antagonists inhibit the proliferation of C6 cells. European Journal of Pharmacology, 2000, 409, 133-142.                                                                                | 3.5 | 27        |
| 74 | A bombesin receptor subtype-3 peptide increases nuclear oncogene expression in a MEK-1 dependent manner in human lung cancer cells. European Journal of Pharmacology, 2001, 412, 13-20.                                  | 3.5 | 27        |
| 75 | PACAP-27 tyrosine phosphorylates mitogen activated protein kinase and increases VEGF mRNAs in human lung cancer cells. Regulatory Peptides, 2002, 109, 135-140.                                                          | 1.9 | 27        |
| 76 | CAI inhibits the growth of small cell lung cancer cells. Lung Cancer, 2003, 39, 279-288.                                                                                                                                 | 2.0 | 27        |
| 77 | Thymosin $\hat{l}\pm 1$ as a Chemopreventive Agent in Lung and Breast Cancer. Annals of the New York Academy of Sciences, 2007, 1112, 297-304.                                                                           | 3.8 | 27        |
| 78 | Bombesin and gastrin releasing peptide increase tyrosine phosphorylation of focal adhesion kinase and paxillin in non-small cell lung cancer cells. Cancer Letters, 2001, 162, 87-95.                                    | 7.2 | 26        |
| 79 | A Vasoactive Intestinal Peptide Antagonist Inhibits the Growth of Glioblastoma Cells. Journal of<br>Molecular Neuroscience, 2001, 17, 331-340.                                                                           | 2.3 | 26        |
| 80 | BW2258U89: A GRP receptor antagonist which inhibits small cell lung cancer growth. Life Sciences, 1995, 56, 521-529.                                                                                                     | 4.3 | 25        |
| 81 | Bombesin activates MAP kinase in non-small cell lung cancer cells. Peptides, 1999, 20, 121-126.                                                                                                                          | 2.4 | 25        |
| 82 | SR48692 inhibits non-small cell lung cancer proliferation in an EGF receptor-dependent manner. Life<br>Sciences, 2014, 100, 25-34.                                                                                       | 4.3 | 25        |
| 83 | A possible new target in lung-cancer cells: The orphan receptor, bombesin receptor subtype-3. Peptides, 2018, 101, 213-226.                                                                                              | 2.4 | 25        |
| 84 | Thymosin $\hat{l}\pm 1$ inhibits mammary carcinogenesis in Fisher rats. Peptides, 2002, 23, 1011-1014.                                                                                                                   | 2.4 | 24        |
| 85 | Reduction in transforming growth factor-Î <sup>2</sup> type II receptor in mouse lung carcinogenesis. Molecular<br>Carcinogenesis, 1998, 22, 46-56.                                                                      | 2.7 | 23        |
| 86 | (N-stearyl, Norleucine <sup>17</sup> )VIPhybrid is a Broad Spectrum Vasoactive Intestinal Peptide<br>Receptor Antagonist. Journal of Molecular Neuroscience, 2002, 18, 29-36.                                            | 2.3 | 23        |
| 87 | VIP receptor antagonists inhibit mammary carcinogenesis in C3(1)SV40T antigen mice. Life Sciences, 2004, 74, 1345-1357.                                                                                                  | 4.3 | 23        |
| 88 | Vasoactive intestinal peptide–camptothecin conjugates inhibit the proliferation of breast cancer cells. Peptides, 2007, 28, 1883-1890.                                                                                   | 2.4 | 23        |
| 89 | Pharmacology of putative selective hBRS-3 receptor agonists for human bombesin receptors (BnR):<br>Affinities, potencies and selectivity in multiple native and BnR transfected cells. Peptides, 2010, 31,<br>1569-1578. | 2.4 | 23        |
| 90 | Endothelin causes transactivation of the EGFR and HER2 in non-small cell lung cancer cells. Peptides, 2017, 90, 90-99.                                                                                                   | 2.4 | 23        |

| #   | Article                                                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Enhanced tumorigenesis and reduced transforming growth factor-? type II receptor in lung tumors from mice with reduced gene dosage of transforming growth factor-?1. Molecular Carcinogenesis, 2000, 29, 112-126.                                                                                        | 2.7 | 22        |
| 92  | Camptothecin-somatostatin conjugates inhibit the growth of small cell lung cancer cells. Peptides, 2005, 26, 1560-1566.                                                                                                                                                                                  | 2.4 | 22        |
| 93  | TGFα-PE40 inhibits non-small cell lung cancer growth. Life Sciences, 1994, 54, 445-453.                                                                                                                                                                                                                  | 4.3 | 21        |
| 94  | ML-18 is a non-peptide bombesin receptor subtype-3 antagonist which inhibits lung cancer growth.<br>Peptides, 2015, 64, 55-61.                                                                                                                                                                           | 2.4 | 21        |
| 95  | Bombesin/Gastrin-Releasing Peptide Receptor Antagonists Increase the Ability of Histone Deacetylase<br>Inhibitors to Reduce Lung Cancer Proliferation. Journal of Molecular Neuroscience, 2006, 28, 231-238.                                                                                             | 2.3 | 20        |
| 96  | Thymosinα1 is chemopreventive for lung adenoma formation in A/J mice. Cancer Letters, 2000, 155, 121-127.                                                                                                                                                                                                | 7.2 | 19        |
| 97  | Neuropeptides as lung cancer growth factors. Peptides, 2015, 72, 106-111.                                                                                                                                                                                                                                | 2.4 | 19        |
| 98  | Bombesin marine toxin conjugates inhibit the growth of lung cancer cells. Life Sciences, 2008, 82, 855-861.                                                                                                                                                                                              | 4.3 | 18        |
| 99  | Somatostatin inhibits the secretion of bombesin-like peptides from small cell lung cancer cells.<br>Peptides, 1988, 9, 257-261.                                                                                                                                                                          | 2.4 | 17        |
| 100 | AH6809 antagonizes non-small cell lung cancer prostaglandin receptors. Lung Cancer, 2002, 36, 33-42.                                                                                                                                                                                                     | 2.0 | 17        |
| 101 | Bombesin Receptor Family Activation and CNS/Neural Tumors: Review of Evidence Supporting Possible<br>Role for Novel Targeted Therapy. Frontiers in Endocrinology, 2021, 12, 728088.                                                                                                                      | 3.5 | 17        |
| 102 | Transforming Growth Factor-Beta Expression in Mouse Lung Carcinogenesis. Experimental Lung<br>Research, 1998, 24, 579-593.                                                                                                                                                                               | 1.2 | 16        |
| 103 | The G Protein–Coupled Receptor PAC1 Regulates Transactivation of the Receptor Tyrosine Kinase HER3.<br>Journal of Molecular Neuroscience, 2021, 71, 1589-1597.                                                                                                                                           | 2.3 | 16        |
| 104 | The development of VIP–ellipticine conjugates. Regulatory Peptides, 2004, 123, 187-192.                                                                                                                                                                                                                  | 1.9 | 15        |
| 105 | Breast Cancer VPAC1 Receptors. Annals of the New York Academy of Sciences, 2006, 1070, 436-439.                                                                                                                                                                                                          | 3.8 | 15        |
| 106 | Bombesin-Related Peptides and Neurotensin: Effects on Cancer Growth/Proliferation and Cellular Signaling in Cancer. , 2006, , 429-434.                                                                                                                                                                   |     | 14        |
| 107 | Pituitary adenylate cyclase-activating polypeptide/vasoactive intestinal peptide [Part 1]: biology, pharmacology, and new insights into their cellular basis of action/signaling which are providing new therapeutic targets. Current Opinion in Endocrinology, Diabetes and Obesity, 2021, 28, 198-205. | 2.3 | 14        |
| 108 | CI-988 Inhibits EGFR Transactivation and Proliferation Caused by Addition of CCK/Gastrin to Lung Cancer Cells. Journal of Molecular Neuroscience, 2015, 56, 663-672.                                                                                                                                     | 2.3 | 13        |

| #   | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Peptide receptors as cancer drug targets. Annals of the New York Academy of Sciences, 2019, 1455, 141-148.                                                                                                                                                  | 3.8 | 13        |
| 110 | Neuropeptide bombesin receptor activation stimulates growth of lung cancer cells through HER3<br>with a MAPK-dependent mechanism. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867,<br>118625.                                           | 4.1 | 13        |
| 111 | PAC1 regulates receptor tyrosine kinase transactivation in a reactive oxygen species-dependent manner. Peptides, 2019, 120, 170017.                                                                                                                         | 2.4 | 11        |
| 112 | Bombesin/GRP and vasoactive intestinal peptide/PACAP as growth factors. Growth Factors and Cytokines in Health and Disease, 1996, 1, 491-535.                                                                                                               | 0.2 | 10        |
| 113 | Neurotensin receptors regulate transactivation of the EGFR and HER2 in a reactive oxygen species-dependent manner. European Journal of Pharmacology, 2019, 865, 172735.                                                                                     | 3.5 | 8         |
| 114 | Pituitary adenylate cyclase-activating polypeptide/vasoactive intestinal peptide (Part 2): biology and clinical importance in central nervous system and inflammatory disorders. Current Opinion in Endocrinology, Diabetes and Obesity, 2021, 28, 206-213. | 2.3 | 8         |
| 115 | PYK-2 is Tyrosine Phosphorylated after Activation of Pituitary Adenylate Cyclase Activating Polypeptide<br>Receptors in Lung Cancer Cells. Journal of Molecular Neuroscience, 2012, 48, 660-666.                                                            | 2.3 | 7         |
| 116 | PACAP and Cancer. Current Topics in Neurotoxicity, 2016, , 795-814.                                                                                                                                                                                         | 0.4 | 7         |
| 117 | Pituitary Adenylate Cyclase-Activating Polypeptide Causes Increased Tyrosine Phosphorylation of Focal<br>Adhesion Kinase and Paxillin. Journal of Molecular Neuroscience, 2012, 46, 68-74.                                                                  | 2.3 | 6         |
| 118 | Bombesin, endothelin, neurotensin and pituitary adenylate cyclase activating polypeptide cause tyrosine phosphorylation of receptor tyrosine kinases. Peptides, 2021, 137, 170480.                                                                          | 2.4 | 6         |
| 119 | Bombesin Peptides. , 2013, , 506-511.                                                                                                                                                                                                                       |     | 5         |
| 120 | AM-37 and ST-36 Are Small Molecule Bombesin Receptor Antagonists. Frontiers in Endocrinology, 2017, 8, 176.                                                                                                                                                 | 3.5 | 4         |
| 121 | Bombesin-Related Peptides. , 2013, , 1188-1196.                                                                                                                                                                                                             |     | 3         |
| 122 | VIP and PACAP as Autocrine Growth Factors in Breast and Lung Cancer. , 2006, , 473-477.                                                                                                                                                                     |     | 2         |
| 123 | VIP/PACAP Receptors. , 2013, , 556-561.                                                                                                                                                                                                                     |     | 2         |
| 124 | ADCYAP1 (adenylate cyclase activating polypeptide 1 (pituitary)). Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2017, , .                                                                                                                 | 0.1 | 0         |
| 125 | Cancer Cell Receptor Internalization and Proliferation: Effects of Neuropeptide Analogs.<br>Neuromethods, 2008, , 115-129.                                                                                                                                  | 0.3 | 0         |