Yiannis A Ventikos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6506078/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Simulations of flow through open cell metal foams using an idealized periodic cell structure. International Journal of Heat and Fluid Flow, 2003, 24, 825-834.	1.1	269
2	Computational study of high-speed liquid droplet impact. Journal of Applied Physics, 2002, 92, 2821-2828.	1.1	169
3	Morphomechanical Innovation Drives Explosive Seed Dispersal. Cell, 2016, 166, 222-233.	13.5	128
4	Modifiable Lifestyle Factors in Dementia: A Systematic Review of Longitudinal Observational Cohort Studies. Journal of Alzheimer's Disease, 2014, 42, 119-135.	1.2	125
5	Haemodynamics and wall remodelling of a growing cerebral aneurysm: A computational model. Journal of Biomechanics, 2007, 40, 412-426.	0.9	117
6	Interaction of a strong shockwave with a gas bubble in a liquid medium: a numerical study. Journal of Fluid Mechanics, 2012, 701, 59-97.	1.4	110
7	Haemodynamic simulation of aneurysm coiling in an anatomically accurate computational fluid dynamics model: technical note. Neuroradiology, 2008, 50, 341-347.	1.1	101
8	Cerebral water transport using multiple-network poroelastic theory: application to normal pressure hydrocephalus. Journal of Fluid Mechanics, 2011, 667, 188-215.	1.4	99
9	Computational investigation of subject-specific cerebrospinal fluid flow in the third ventricle and aqueduct of Sylvius. Journal of Biomechanics, 2007, 40, 1235-1245.	0.9	92
10	The three-dimensional structure of confined swirling flows with vortex breakdown. Journal of Fluid Mechanics, 2001, 426, 155-175.	1.4	87
11	Chaotic advection in three-dimensional stationary vortex-breakdown bubbles: Åjil'nikov's chaos and the devil's staircase. Journal of Fluid Mechanics, 2001, 444, 257-297.	1.4	77
12	The Haemodynamics of Endovascular Aneurysm Treatment: A Computational Modelling Approach for Estimating the Influence of Multiple Coil Deployment. IEEE Transactions on Medical Imaging, 2008, 27, 814-824.	5.4	77
13	Impulsively actuated jets from thin liquid films for high-resolution printing applications. Journal of Fluid Mechanics, 2012, 709, 341-370.	1.4	77
14	Organized modes and the three-dimensional transition to turbulence in the incompressible flow around a NACA0012 wing. Journal of Fluid Mechanics, 2003, 496, 63-72.	1.4	76
15	A numerical method for the simulation of steady and unsteady cavitating flows. Computers and Fluids, 2000, 29, 63-88.	1.3	74
16	Computational simulation of intracoronary flow based on real coronary geometryâ~†. European Journal of Cardio-thoracic Surgery, 2004, 26, 248-256.	0.6	73
17	Modelling the mechanical response of elastin for arterial tissue. Journal of Biomechanics, 2009, 42, 1320-1325.	0.9	70
18	Coupling the Hemodynamic Environment to the Evolution of Cerebral Aneurysms: Computational Framework and Numerical Examples. Journal of Biomechanical Engineering, 2009, 131, 101003.	0.6	67

#	Article	IF	CITATIONS
19	A longitudinal study of Type-B aortic dissection and endovascular repair scenarios: Computational analyses. Medical Engineering and Physics, 2013, 35, 1321-1330.	0.8	66
20	Shock wave formation in droplet impact on a rigid surface: lateral liquid motion and multiple wave structure in the contact line region. Journal of Fluid Mechanics, 2003, 490, 1-14.	1.4	57
21	Coupling Poroelasticity and CFD for Cerebrospinal Fluid Hydrodynamics. IEEE Transactions on Biomedical Engineering, 2009, 56, 1644-1651.	2.5	56
22	Computational Modeling of the Mechanical Behavior of the Cerebrospinal Fluid System. Journal of Biomechanical Engineering, 2005, 127, 264-269.	0.6	55
23	Modelling the growth and stabilization of cerebral aneurysms. Mathematical Medicine and Biology, 2009, 26, 133-164.	0.8	54
24	Robotic swarm concept for efficient oil spill confrontation. Journal of Hazardous Materials, 2008, 154, 880-887.	6.5	52
25	CFD and PTV Steady Flow Investigation in an Anatomically Accurate Abdominal Aortic Aneurysm. Journal of Biomechanical Engineering, 2009, 131, 011008.	0.6	52
26	A patient-specific study of type-B aortic dissection: evaluation of true-false lumen blood exchange. BioMedical Engineering OnLine, 2013, 12, 65.	1.3	52
27	Transitional flow in aneurysms and the computation of haemodynamic parameters. Journal of the Royal Society Interface, 2015, 12, 20141394.	1.5	52
28	Modelling evolution and the evolving mechanical environment of saccular cerebral aneurysms. Biomechanics and Modeling in Mechanobiology, 2011, 10, 109-132.	1.4	51
29	Numerical and Experimental Investigation of an Annular Jet Flow With Large Blockage. Journal of Fluids Engineering, Transactions of the ASME, 2004, 126, 375-384.	0.8	49
30	Subject-specific multi-poroelastic model for exploring the risk factors associated with the early stages of Alzheimer's disease. Interface Focus, 2018, 8, 20170019.	1.5	49
31	Computational modelling of the interaction of shock waves with multiple gas-filled bubbles in a liquid. Physics of Fluids, 2015, 27, .	1.6	43
32	Investigating cerebral oedema using poroelasticity. Medical Engineering and Physics, 2016, 38, 48-57.	0.8	43
33	Transition from bubble-type vortex breakdown to columnar vortex in a confined swirling flow. International Journal of Heat and Fluid Flow, 1998, 19, 446-458.	1.1	40
34	Investigating the Influence of Haemodynamic Stimuli on Intracranial Aneurysm Inception. Annals of Biomedical Engineering, 2013, 41, 1492-1504.	1.3	39
35	Thrombosis in Cerebral Aneurysms and the Computational Modeling Thereof: A Review. Frontiers in Physiology, 2018, 9, 306.	1.3	39
36	Finite element evaluations of the mechanical properties of polycaprolactone/hydroxyapatite scaffolds by direct ink writing: Effects of pore geometry. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 104, 103665.	1.5	39

#	Article	IF	CITATIONS
37	Personalizing flowâ€diverter intervention for cerebral aneurysms: from computational hemodynamics to biochemical modeling. International Journal for Numerical Methods in Biomedical Engineering, 2014, 30, 1387-1407.	1.0	36
38	Flow Through a Curved Duct Using Nonlinear Two-Equation Turbulence Models. AIAA Journal, 1998, 36, 1256-1262.	1.5	34
39	On the Genealogy of Tissue Engineering and Regenerative Medicine. Tissue Engineering - Part B: Reviews, 2015, 21, 203-217.	2.5	34
40	Three-Dimensional Modeling of Mechanical Forces in the Extracellular Matrix during Epithelial Lumen Formation. Biophysical Journal, 2006, 90, 4380-4391.	0.2	32
41	Investigating biocomplexity through the agent-based paradigm. Briefings in Bioinformatics, 2015, 16, 137-152.	3.2	32
42	Pulsatile Blood Flow in Anatomically Accurate Vessels with Multiple Aneurysms: A Medical Intervention Planning Application of Computational Haemodynamics. Flow, Turbulence and Combustion, 2003, 71, 333-346.	1.4	31
43	Wave structure in the contact line region during high speed droplet impact on a surface: Solution of the Riemann problem for the stiffened gas equation of state. Journal of Applied Physics, 2003, 93, 3090-3097.	1.1	31
44	Computational modelling of clot development in patientâ€specific cerebral aneurysm cases. Journal of Thrombosis and Haemostasis, 2016, 14, 262-272.	1.9	30
45	A fully dynamic multi-compartmental poroelastic system: Application to aqueductal stenosis. Journal of Biomechanics, 2016, 49, 2306-2312.	0.9	30
46	Multi-stage learning for segmentation of aortic dissections using a prior aortic anatomy simplification. Medical Image Analysis, 2021, 69, 101931.	7.0	28
47	On the influence of variation in haemodynamic conditions on the generation and growth of cerebral aneurysms and atherogenesis: A computational model. Journal of Biomechanics, 2007, 40, 3626-3640.	0.9	26
48	Rest versus Exercise Hemodynamics for Middle Cerebral Artery Aneurysms: A Computational Study. American Journal of Neuroradiology, 2010, 31, 317-323.	1.2	26
49	Modelling volumetric growth in a thick walled fibre reinforced artery. Journal of the Mechanics and Physics of Solids, 2014, 73, 134-150.	2.3	26
50	Comparison and calibration of a real-time virtual stenting algorithm using Finite Element Analysis and Genetic Algorithms. Computer Methods in Applied Mechanics and Engineering, 2015, 293, 462-480.	3.4	26
51	A multiple-network poroelastic model for biological systems and application to subject-specific modelling of cerebral fluid transport. International Journal of Engineering Science, 2020, 147, 103204.	2.7	26
52	Ciliary behaviour and mechano-transduction in the embryonic node: Computational testing of hypotheses. Medical Engineering and Physics, 2011, 33, 857-867.	0.8	25
53	A Multi-Paradigm Modeling Framework to Simulate Dynamic Reciprocity in a Bioreactor. PLoS ONE, 2013, 8, e59671.	1.1	25
54	Disturbed flow induces a sustained, stochastic NF-κB activation which may support intracranial aneurysm growth in vivo. Scientific Reports, 2019, 9, 4738.	1.6	25

#	Article	IF	CITATIONS
55	Exploring the Efficacy of Endoscopic Ventriculostomy for Hydrocephalus Treatment via a Multicompartmental Poroelastic Model of CSF Transport: A Computational Perspective. PLoS ONE, 2013, 8, e84577.	1.1	25
56	A Computational Model Combining Vascular Biology and Haemodynamics for Thrombosis Prediction in Anatomically Accurate Cerebral Aneurysms. Food and Bioproducts Processing, 2005, 83, 118-126.	1.8	24
57	Which Spring is the Best? Comparison of Methods for Virtual Stenting. IEEE Transactions on Biomedical Engineering, 2014, 61, 1998-2010.	2.5	24
58	Cerebral oxygenation and optimal vascular brain organization. Journal of the Royal Society Interface, 2015, 12, 20150245.	1.5	24
59	Fluid–structure interaction for highly complex, statistically defined, biological media: Homogenisation and a 3D multi-compartmental poroelastic model for brain biomechanics. Journal of Fluids and Structures, 2019, 91, 102641.	1.5	24
60	Large-scale molecular dynamics simulation of coupled dynamics of flow and glycocalyx: towards understanding atomic events on an endothelial cell surface. Journal of the Royal Society Interface, 2017, 14, 20170780.	1.5	22
61	Principal mode of Syndecanâ€4 mechanotransduction for the endothelial glycocalyx is a scissorâ€like dimer motion. Acta Physiologica, 2020, 228, e13376.	1.8	22
62	The active and passive ciliary motion in the embryo node: A computational fluid dynamics model. Journal of Biomechanics, 2009, 42, 210-216.	0.9	20
63	Modelling evolution of saccular cerebral aneurysms. Journal of Strain Analysis for Engineering Design, 2009, 44, 375-389.	1.0	19
64	Large-scale molecular dynamics simulation of flow under complex structure of endothelial glycocalyx. Computers and Fluids, 2018, 173, 140-146.	1.3	19
65	Residence times and basins of attraction for a realistic right internal carotid artery with two aneurysms. Biorheology, 2002, 39, 387-93.	1.2	19
66	Oscillatory behavior of nanodroplets. Physical Review E, 2004, 70, 011505.	0.8	18
67	Computational modelling for cerebral aneurysms: risk evaluation and interventional planning. British Journal of Radiology, 2009, 82, S62-S71.	1.0	18
68	General Computational Methodology for Modeling Electrohydrodynamic Flows: Prediction and Optimization Capability for the Generation of Bubbles and Fibers. Langmuir, 2019, 35, 10203-10212.	1.6	18
69	First stages of the transition to turbulence and control in the incompressible detached flow around a NACA0012 wing. International Journal of Heat and Fluid Flow, 2006, 27, 878-886.	1.1	17
70	Modelling of experimentally created partial-thickness human skin burns and subsequent therapeutic cooling: A new measure for cooling effectiveness. Medical Engineering and Physics, 2009, 31, 624-631.	0.8	17
71	On the Validation of a Multiple-Network Poroelastic Model Using Arterial Spin Labeling MRI Data. Frontiers in Computational Neuroscience, 2019, 13, 60.	1.2	17
72	A Virtual Comparison of the eCLIPs Device and Conventional Flow-Diverters as Treatment for Cerebral Bifurcation Aneurysms. Cardiovascular Engineering and Technology, 2019, 10, 508-519.	0.7	17

#	Article	IF	CITATIONS
73	Dual Pulsating or Steady Slot Jet Cooling of a Constant Heat Flux Surface. Journal of Heat Transfer, 2003, 125, 575-586.	1.2	16
74	The Role of Biofluid Mechanics in the Assessment of Clinical and Pathological Observations. Annals of Biomedical Engineering, 2010, 38, 1216-1224.	1.3	16
75	The importance of the constructal framework in understanding and eventually replicating structure in tissue. Physics of Life Reviews, 2011, 8, 241-242.	1.5	16
76	Computational modelling for the embolization of brain arteriovenous malformations. Medical Engineering and Physics, 2012, 34, 873-881.	0.8	16
77	Synergistic activity of polarised osteoblasts inside condensations cause their differentiation. Scientific Reports, 2015, 5, 11838.	1.6	16
78	Characterizing and Modeling Bone Formation during Mouse Calvarial Development. Physical Review Letters, 2019, 122, 048103.	2.9	16
79	Boundary layer transition over a foil using direct numerical simulation and large eddy simulation. Physics of Fluids, 2019, 31, .	1.6	16
80	The â€~Sphere': A Dedicated Bifurcation Aneurysm Flow-Diverter Device. Cardiovascular Engineering and Technology, 2014, 5, 334-347.	0.7	15
81	Numerical and experimental investigation into the dynamics of a bubble-free-surface system. Physical Review Fluids, 2021, 6, .	1.0	15
82	Modelling the influence of endothelial heterogeneity on the progression of arterial disease: application to abdominal aortic aneurysm evolution. International Journal for Numerical Methods in Biomedical Engineering, 2014, 30, 563-586.	1.0	14
83	Oligosaccharide model of the vascular endothelial glycocalyx in physiological flow. Microfluidics and Nanofluidics, 2018, 22, 21.	1.0	14
84	Modelling the Evolution of Cerebral Aneurysms: Biomechanics, Mechanobiology and Multiscale Modelling. Procedia IUTAM, 2014, 10, 396-409.	1.2	13
85	Regimes of Flow over Complex Structures of Endothelial Glycocalyx: A Molecular Dynamics Simulation Study. Scientific Reports, 2018, 8, 5732.	1.6	13
86	A simplified approach for simulations of multidimensional compressible multicomponent flows: The grid-aligned ghost fluid method. Journal of Computational Physics, 2020, 405, 109129.	1.9	13
87	Energy focusing in shock-collapsed bubble arrays. Journal of Fluid Mechanics, 2020, 900, .	1.4	13
88	Reconstruction of Cerebrospinal Fluid Flow in the Third Ventricle Based on MRI Data. Lecture Notes in Computer Science, 2005, 8, 786-793.	1.0	13
89	The effect of imperfections on the emergence of three-dimensionality in stationary vortex breakdown bubbles. Physics of Fluids, 2002, 14, L13-L16.	1.6	12
90	Modelling of the physiological response of the brain to ischaemic stroke. Interface Focus, 2013, 3, 20120079.	1.5	12

#	Article	IF	CITATIONS
91	See-saw rocking: an <i>in vitro</i> model for mechanotransduction research. Journal of the Royal Society Interface, 2014, 11, 20140330.	1.5	12
92	Development of a pneumatically driven active cover lid for multi-well microplates for use in perfusion three-dimensional cell culture. Scientific Reports, 2015, 5, 18352.	1.6	12
93	Dynamic reciprocity revisited. Journal of Theoretical Biology, 2015, 370, 205-208.	0.8	12
94	Novel Preparation of Monodisperse Microbubbles by Integrating Oscillating Electric Fields with Microfluidics. Micromachines, 2018, 9, 497.	1.4	12
95	Marangoni and Variable Viscosity Phenomena in Picoliter Size Solder Droplet Deposition. Journal of Heat Transfer, 2003, 125, 365-376.	1.2	11
96	Towards Treatment Planning for the Embolization of Arteriovenous Malformations of the Brain: Intranidal Hemodynamics Modeling. IEEE Transactions on Biomedical Engineering, 2011, 58, 1994-2001.	2.5	11
97	Quantification and significance of fluid shear stress field in biaxial cell stretching device. Biomechanics and Modeling in Mechanobiology, 2011, 10, 559-564.	1.4	11
98	Towards Predicting Patient-Specific Flow-Diverter Treatment Outcomes for Bifurcation Aneurysms: From Implantation Rehearsal to Virtual Angiograms. Annals of Biomedical Engineering, 2016, 44, 99-111.	1.3	11
99	Exploring neurodegenerative disorders using a novel integrated model of cerebral transport: Initial results. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2020, 234, 1223-1234.	1.0	11
100	Wing-tip vortex dynamics at moderate Reynolds numbers. Physics of Fluids, 2021, 33, 035111.	1.6	11
101	Multicompartmental Poroelasticity as a Platform for the Integrative Modeling of Water Transport in the Brain. , 2013, , 305-316.		11
102	Modeling asymmetric cavity collapse with plasma equations of state. Physical Review E, 2016, 93, 053105.	0.8	10
103	Virtual flow-diverter treatment planning: The effect of device placement on bifurcation aneurysm haemodynamics. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2017, 231, 432-443.	1.0	10
104	CFD Modeling of an Ultrasonic Separator for the Removal of Lipid Particles From Pericardial Suction Blood. IEEE Transactions on Biomedical Engineering, 2011, 58, 282-290.	2.5	9
105	Resolving the Issue of Resolution. American Journal of Neuroradiology, 2014, 35, 544-545.	1.2	9
106	Effect of the Mixing Region Geometry and Collector Distance on Microbubble Formation in a Microfluidic Device Coupled with ac–dc Electric Fields. Langmuir, 2019, 35, 10052-10060.	1.6	9
107	Microvascular ion transport through endothelial glycocalyx layer: new mechanism and improved Starling principle. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H104-H113.	1.5	9
108	A Preliminary Study of Fast Virtual Stent-Graft Deployment: Application to Stanford Type B Aortic Dissection. International Journal of Advanced Robotic Systems, 2013, 10, 154.	1.3	8

#	Article	IF	CITATIONS
109	Characterizing shock waves in hydrogel using high speed imaging and a fiber-optic probe hydrophone. Physics of Fluids, 2017, 29, 057101.	1.6	8
110	Reducing Salt Intake and Exercising Regularly: Implications From Molecular Dynamics Simulations of Endothelial Glycocalyx. Frontiers in Physiology, 2018, 9, 1667.	1.3	8
111	Local remeshing for large amplitude grid deformations. Journal of Computational Physics, 2008, 227, 2781-2793.	1.9	7
112	Multi-scale interaction of particulate flow and the artery wall. Medical Engineering and Physics, 2011, 33, 840-848.	0.8	7
113	A computational analysis of the impact of mass transport and shear on three-dimensional stem cell cultures in perfused micro-bioreactors. Chinese Journal of Chemical Engineering, 2016, 24, 163-174.	1.7	7
114	Modelling the interaction of haemodynamics and the artery wall: Current status and future prospects. Biomedicine and Pharmacotherapy, 2008, 62, 530-535.	2.5	6
115	Response to letter to the editor concerning "A fully dynamic multi-compartmental poroelastic system: Application to aqueductal stenosis― Journal of Biomechanics, 2017, 58, 243-246.	0.9	6
116	A Computational Framework to Predict Calvarial Growth: Optimising Management of Sagittal Craniosynostosis. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	2.0	6
117	Computational Simulation of the Blood Separation Process. Artificial Organs, 2005, 29, 665-674.	1.0	5
118	Risk evaluation and interventional planning for cerebral aneurysms: computational models for growth, coiling and thrombosis. International Journal of Computational Fluid Dynamics, 2009, 23, 595-607.	0.5	5
119	Understanding endothelial glycocalyx function under flow shear stress from a molecular perspective. Biorheology, 2019, 56, 89-100.	1.2	5
120	Membrane Deformation of Endothelial Surface Layer Interspersed with Syndecan-4: A Molecular Dynamics Study. Annals of Biomedical Engineering, 2020, 48, 357-366.	1.3	5
121	Molecular dynamics simulation: A new way to understand the functionality of the endothelial glycocalyx. Current Opinion in Structural Biology, 2022, 73, 102330.	2.6	5
122	Modelling Cerebral Aneurysm Evolution. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2011, , 373-399.	0.7	4
123	An approach to the symbolic representation of brain arteriovenous malformations for management and treatment planning. Neuroradiology, 2014, 56, 195-209.	1.1	4
124	Chemosignalling, mechanotransduction and ciliary behaviour in the embryonic node: Computational evaluation of competing theories. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2014, 228, 465-476.	1.0	4
125	A simple ghost fluid method for compressible multicomponent flows with capillary effects. Journal of Computational Physics, 2021, 424, 109861.	1.9	4
126	Using Sensitivity Analysis to Develop a Validated Computational Model of Post-operative Calvarial Growth in Sagittal Craniosynostosis. Frontiers in Cell and Developmental Biology, 2021, 9, 621249.	1.8	4

#	Article	IF	CITATIONS
127	Understanding the Role of Endothelial Glycocalyx in Mechanotransduction via Computational Simulation: A Mini Review. Frontiers in Cell and Developmental Biology, 2021, 9, 732815.	1.8	4
128	A hybrid computational aeroacoustic model with application to turbulent flows over foil and bluff bodies. Journal of Sound and Vibration, 2022, 526, 116773.	2.1	4
129	Simulation of warm dense matter in intense bubble collapse. Proceedings of Meetings on Acoustics, 2013, , .	0.3	3
130	Sodium ion transport across the endothelial glycocalyx layer under electric field conditions: A molecular dynamics study. Journal of Chemical Physics, 2020, 153, 105102.	1.2	3
131	Thrombin–Fibrinogen In Vitro Flow Model of Thrombus Growth in Cerebral Aneurysms. TH Open, 2021, 05, e155-e162.	0.7	3
132	Highly integrated workflows for exploring cardiovascular conditions: Exemplars of precision medicine in Alzheimer's disease and aortic dissection. Morphologie, 2019, 103, 148-160.	0.5	3
133	Reproducing the Hemoglobin Saturation Profile, a Marker of the Blood Oxygenation Level Dependent (BOLD) fMRI Effect, at the Microscopic Level. PLoS ONE, 2016, 11, e0149935.	1.1	3
134	Image-based simulation of brain arteriovenous malformation hemodynamics. , 2008, , .		2
135	Commentary on "Computational Study of Anatomical Risk Factors in Idealized Models of Type B Aortic Dissectionâ€: European Journal of Vascular and Endovascular Surgery, 2016, 52, 746.	0.8	2
136	A CFD Framework for Environmentally-Friendly Hydroturbines. , 1999, , 1.		1
137	Marangoni and Variable Viscosity Phenomena in Picoliter Size Solder Droplet Deposition. , 2002, , 15.		1
138	Biological Fluid Mechanics. , 2011, , 203-216.		1
139	A multiscale perspective on the constructal characteristics of human mobility. Physics of Life Reviews, 2013, 10, 195-196.	1.5	1
140	Experimental characterisation of light emission during shock-driven cavity collapse. Proceedings of Meetings on Acoustics, 2013, , .	0.3	1
141	Computational modeling of clot development in patientâ€ s pecific cerebral aneurysm cases: reply. Journal of Thrombosis and Haemostasis, 2017, 15, 397-398.	1.9	1
142	Fluid Viscosity and Corresponding Effects on Fluid flow, Velocity Magnitude and Electric Field Distribution in Electrohydrodynamic Jetting Journal of Physics: Conference Series, 2019, 1322, 012008.	0.3	1
143	Coupling the Haemodynamic Environment to the Evolution of Cerebral Aneurysms. , 2009, ,		1
144	Flow through a curved duct using nonlinear two-equation turbulence models. AIAA Journal, 1998, 36, 1256-1262.	1.5	1

#	Article	IF	CITATIONS
145	Virtual Flow-T Stenting for Two Patient-Specific Bifurcation Aneurysms. Frontiers in Neurology, 2021, 12, 726980.	1.1	1
146	A sharp-interface model for grid-resolved cavitating flows. International Journal of Multiphase Flow, 2022, 149, 103968.	1.6	1
147	Should friction losses be included in an electromechanical model of a bioinspired flapping-wing micro aerial vehicle to estimate the flight energetic requirements?. Bioinspiration and Biomimetics, 2022, 17, 036011.	1.5	1
148	Numerical Investigation of Heat Transfer From a Surface Under the Influence of Two Impinging Pulsating Slot Jets. , 2002, , 15.		0
149	Transition to turbulence and control in the incompressible flow around a NACA0012 wing. , 2005, , 533-542.		0
150	Dynamic Remeshing for Fluid Structure Interaction: Application to Modelling Aortic Dissection. , 2007, , 461.		0
151	An integrative approach to cerebrovascular disease healthcare: IT for cerebral aneurysms. , 2009, , .		Ο
152	Modelling Normal Pressure Hydrocephalus as a â€~Two-Hit' Disease Using Multiple-Network Poroelastic Theory. , 2010, , .		0
153	Is Normal Pressure Hydrocephalus more than a mechanical disruption to CSF flow?. , 2010, 2010, 235-8.		Ο
154	Patient-Specific Modelling of Intracranial Aneurysm Evolution. , 2011, , .		0
155	Acoustic particle manipulation in a 40 kHz quarter-wavelength standing wave with an air boundary. Journal of the Acoustical Society of America, 2012, 131, 3627-3637.	0.5	0
156	Intracranial Aneurysms: Modeling Inception and Enlargement. , 2013, , 161-173.		0
157	A preliminary study of dynein-driven ciliary motility: A computational model. , 2013, , .		0
158	Percussoluminescence. Proceedings of Meetings on Acoustics, 2013, , .	0.3	0
159	Numerical and experimental study of shock-driven cavity collapse. Journal of Physics: Conference Series, 2015, 656, 012011.	0.3	0
160	Porcine In Vivo Validation of a Virtual Contrast Model: The Influence of Contrast Agent Properties and Vessel Flow Rates. American Journal of Neuroradiology, 2016, 37, 2304-2309.	1.2	0
161	Using Multicompartmental Poroelasticity to Explore Brain Biomechanics and Cerebral Diseases. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2021, , 151-163.	0.2	0
162	Cardiovascular Haemodynamic Simulations of Anatomically Accurate Coronaries. , 2003, , .		0

#	Article	IF	CITATIONS
163	Anatomically Accurate Haemodynamic Simulations of Abdominal Aortic Aneurysms. , 2003, , .		0
164	THE ACTIVE AND PASSIVE CILIARY MOTION IN THE EMBRYO NODE : A COMPUTATIONAL FLUID DYNAMICS MODEL(1A3 Micro & amp; Nano Biomechanics III). The Proceedings of the Asian Pacific Conference on Biomechanics Emerging Science and Technology in Biomechanics, 2007, 2007.3, S22.	0.0	0
165	Biological Fluid Mechanics: Integrative and Multiscale Computational Modeling. , 2011, , 18-31.		Ο
166	RELATIVE ROLES OF MECHANICS AND BIOCHEMISTRY IN THE INITIATION AND PROGRESSION OF CEREBRAL ANEURYSM THROMBOSIS. , 2016, , .		0