Xu Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6506023/publications.pdf

Version: 2024-02-01

394421 434195 1,093 45 19 31 citations h-index g-index papers 45 45 45 1121 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	The anammox coupled partial-denitrification process in an integrated granular sludge and fixed-biofilm reactor developed for mainstream wastewater treatment: Performance and community structure. Water Research, 2022, 210, 117964.	11.3	52
2	Hierarchical Response Network Boosts Solvent-Free Ionic Conductive Elastomers with Extreme Stretchability, Healability, and Recyclability for Ionic Sensors. ACS Applied Materials & Diterfaces, 2022, 14, 8404-8416.	8.0	26
3	Carbon composites from iron-chelating pyridine nitrogen-rich coordinated nanosheets for oxygen reduction. Functional Composite Materials, 2022, 3, .	1.4	O
4	Biodegradable Copolyesters with Unexpected Highly Blocky Microstructures and Enhanced Thermal Properties. ACS Sustainable Chemistry and Engineering, 2022, 10, 4438-4450.	6.7	5
5	Dual Carbon-Supported ZnO/CuO Nanocomposites as an Anode with Improved Performance for Li-Ion Batteries. Energy & Energy	5.1	5
6	Strong–Weak Response Network-Enabled Ionic Conductive Hydrogels with High Stretchability, Self-Healability, and Self-Adhesion for Ionic Sensors. ACS Applied Materials & Samp; Interfaces, 2022, 14, 32551-32560.	8.0	16
7	Effect of poly(lactic acid) crystallization on its mechanical and heat resistance performances. Polymer, 2021, 212, 123280.	3.8	35
8	Lipase-Catalyzed Fully Aliphatic Copolyesters Based on Renewable Isohexide Isomers. ACS Sustainable Chemistry and Engineering, 2021, 9, 1599-1612.	6.7	7
9	3D printing of polycaprolactone-based composites with diversely tunable mechanical gradients via multi-material fused deposition modeling. Composites Communications, 2021, 23, 100600.	6.3	43
10	Dense Hydrogen-Bonding Network Boosts Ionic Conductive Hydrogels with Extremely High Toughness, Rapid Self-Recovery, and Autonomous Adhesion for Human-Motion Detection. Research, 2021, 2021, 9761625.	5.7	40
11	Supramolecular Self-assembly Behaviors of Asymmetric Diblock Copolymer Blends with Hydrogen Bonding Interactions between Shorter Blocks Modelled by Yukawa Potentials. Chinese Journal of Polymer Science (English Edition), 2021, 39, 1502-1509.	3.8	3
12	A Review of Conductive Carbon Materials for 3D Printing: Materials, Technologies, Properties, and Applications. Materials, 2021, 14, 3911.	2.9	34
13	Discovery of unusual morphological evolution of A-graft-(B-block-C) graft terpolymers by tuning the length of B component. Chemical Physics Letters, 2021, 784, 139090.	2.6	O
14	Metagenomics and metatranscriptomics uncover the microbial community associated with high S0 production in a denitrifying desulfurization granular sludge reactor. Water Research, 2021, 203, 117505.	11.3	12
15	Fabrication of surface modified graphene oxide/unsaturated polyester nanocomposites via in-situ polymerization: Comprehensive property enhancement. Applied Surface Science, 2020, 502, 144164.	6.1	22
16	Controllable interfacial adhesion behaviors of polymer-on-polymer surfaces during fused deposition modeling 3D printing process. Chemical Physics Letters, 2020, 739, 136959.	2.6	21
17	Fused deposition modeling 3D printing of polyamide-based composites and its applications. Composites Communications, 2020, 21, 100413.	6.3	137
18	Characteristics of oxidative stress and antioxidant defenses by a mixed culture of acidophilic bacteria in response to Co2+ exposure. Extremophiles, 2020, 24, 485-499.	2.3	8

#	Article	IF	CITATIONS
19	Fabrication of thermoplastic functionally gradient composite parts with anisotropic thermal conductive properties based on multicomponent fused deposition modeling 3D printing. Composites Communications, 2020, 19, 142-146.	6.3	57
20	Mechanically robust nanocomposites from screen-printable polymer/graphene nanosheet pastes. Nanoscale, 2019, 11, 2343-2354.	5.6	18
21	Water dispersible magnetite graphene oxide anchored sulfonic acid hybrid for mechanical enhancement of waterborne epoxy nanocomposites. Composites Part B: Engineering, 2019, 171, 119-129.	12.0	15
22	Mechanism underlying the bioleaching process of LiCoO2 by sulfur-oxidizing and iron-oxidizing bacteria. Journal of Bioscience and Bioengineering, 2019, 128, 344-354.	2.2	56
23	Design, synthesis, and theoretical analysis of thermal stability epoxy resins obtained through a facile and cost-effective approach. Chemical Physics Letters, 2019, 727, 38-44.	2.6	1
24	Self-assembly behaviors of graft copolymer structured fluid droplets on flat solid surfaces. Chemical Physics Letters, 2019, 721, 43-48.	2.6	2
25	Waterborne polyurethane/graphene oxide-silica nanocomposites with improved mechanical and thermal properties for leather coatings using screen printing. Polymer, 2019, 170, 43-53.	3.8	81
26	High performance POSS filled nanocomposites prepared via UV-curing based on 3D stereolithography printing. Composites Part A: Applied Science and Manufacturing, 2019, 117, 276-286.	7.6	36
27	Resveratrol improves ex vivo expansion of CB D34 ⁺ cells via downregulating intracellular reactive oxygen species level. Journal of Cellular Biochemistry, 2019, 120, 7778-7787.	2.6	4
28	Oxidative Stress Induced by Metal Ions in Bioleaching of LiCoO2 by an Acidophilic Microbial Consortium. Frontiers in Microbiology, 2019, 10, 3058.	3.5	26
29	Enhancement of Lightweight Composite Parts with Robust Cellular Structures by Combining Fused Deposition Modeling and Electromagnetic Induction Heating. Advanced Engineering Materials, 2018, 20, 1800215.	3.5	18
30	Distinct Mechanical Properties of Polymer/Polymerâ€Graftingâ€Graphene Nanocomposites. Macromolecular Chemistry and Physics, 2018, 219, 1800161.	2.2	11
31	Morphology transformation of micelles self-assembled from amphiphilic coil-coil diblock copolymer/nanoparticle mixture in dilute solution by combining self-consistent field theory and density functional theory. Chemical Physics Letters, 2018, 710, 215-220.	2.6	6
32	High Strength Conductive Polyamide 6 Nanocomposites Reinforced by Prebuilt Three-Dimensional Carbon Nanotube Networks. ACS Applied Materials & Samp; Interfaces, 2018, 10, 28103-28111.	8.0	26
33	Hierarchical Microstructures Selfâ€Assembled from Linear Multiblock Copolymers in Thin Films. Macromolecular Theory and Simulations, 2015, 24, 468-476.	1.4	6
34	Controllable Hierarchical Microstructures Self-Assembled from Multiblock Copolymers Confined in Thin Films. Langmuir, 2015, 31, 2533-2544.	3.5	19
35	Supramolecular assembly of diblock copolymer blends with hydrogen-bonding interactions modeled by Yukawa potentials. Polymer, 2015, 78, 69-80.	3.8	10
36	Determination of Optimal Reaction Conditions and Influence of Metal Ions on Cellulose Degradation by Cellulase in the Dioctyl Sulfosuccinate Sodium Salt (AOT)/n-Hexanol/Cyclohexane Reversed Micelle System. Journal of Dispersion Science and Technology, 2014, 35, 14-21.	2.4	2

Xu Zhang

#	Article	IF	CITATION
37	Hierarchical microstructures self-assembled from polymer systems. Polymer, 2013, 54, 3427-3442.	3.8	54
38	Phase behaviors of supramolecular graft copolymers with reversible bonding. Journal of Chemical Physics, 2013, 139, 184901.	3.0	6
39	Morphology Transformation of Hybrid Micelles Self-Assembled from Rod–Coil Block Copolymer and Nanoparticles. Langmuir, 2012, 28, 4515-4524.	3.5	55
40	Study of CMC and Thermodynamic Properties on Formation Micelle of 1-Phenyl-3-methyl-4-benzoyl-pyrazolane-5 Salts in the Organic Solvent +Sec-octyl Alcohol Systems at 298.15ÂK Using a Microcalorimetric Method. Journal of Dispersion Science and Technology, 2011, 32, 299-304.	2.4	0
41	Effects of calcium ion on adenovirus production with high densities of HEK293 cells. Biotechnology and Bioprocess Engineering, 2010, 15, 414-420.	2.6	5
42	Enhanced enzymatic hydrolysis of rice straw pretreated by alkali assisted with photocatalysis technology. Journal of Chemical Technology and Biotechnology, 2009, 84, 1240-1245.	3.2	52
43	The role of microenvironment in aggregation of the 293-human embryonic Kidney cells. Korean Journal of Chemical Engineering, 2007, 24, 796-799.	2.7	7
44	Absorption Rate into a MDEA Aqueous Solution Blended with Piperazine under a High CO2 Partial Pressure. Industrial & Engineering Chemistry Research, 2003, 42, 118-122.	3.7	49
45	Physical Origin of Distinct Mechanical Properties of Polymer Tethered Graphene Nanosheets Reinforced Polymer Nanocomposites Revealed by Nonequilibrium Molecular Dynamics Simulations. Macromolecular Theory and Simulations, 0, , 2100044.	1.4	5