Yechiel Shai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6505449/publications.pdf Version: 2024-02-01

VECHIEL SHAL

#	Article	IF	CITATIONS
1	Mode of action of membrane active antimicrobial peptides. Biopolymers, 2002, 66, 236-248.	2.4	1,374
2	Mode of action of linear amphipathic \hat{l} ±-helical antimicrobial peptides. Biopolymers, 1998, 47, 451-463.	2.4	729
3	Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. Biochemical Journal, 1999, 341, 501-513.	3.7	494
4	From Innate Immunity to de-Novo Designed Antimicrobial Peptides. Current Pharmaceutical Design, 2002, 8, 715-725.	1.9	128
5	Cyclization of a Cytolytic Amphipathic α-Helical Peptide and Its Diastereomer:  Effect on Structure, Interaction with Model Membranes, and Biological Function. Biochemistry, 2000, 39, 6103-6114.	2.5	119
6	Mechanisms of biofilm inhibition and degradation by antimicrobial peptides. Biochemical Journal, 2015, 468, 259-270.	3.7	116
7	Transmembrane domains interactions within the membrane milieu: Principles, advances and challenges. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 974-983.	2.6	112
8	Specificity in Transmembrane Helix-Helix Interactions Mediated by Aromatic Residues. Journal of Biological Chemistry, 2007, 282, 19753-19761.	3.4	101
9	Regulation of innate immune responses by transmembrane interactions: Lessons from the TLR family. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1586-1593.	2.6	84
10	Structure and Organization of Hemolytic and Nonhemolytic Diastereomers of Antimicrobial Peptides in Membranes. Biochemistry, 1999, 38, 16963-16973.	2.5	82
11	The Effect of Cyclization of Magainin 2 and Melittin Analogues on Structure, Function, and Model Membrane Interactions:Â Implication to Their Mode of Action. Biochemistry, 2001, 40, 6388-6397.	2.5	80
12	Effect of Multiple Aliphatic Amino Acids Substitutions on the Structure, Function, and Mode of Action of Diastereomeric Membrane Active Peptides. Biochemistry, 2001, 40, 12591-12603.	2.5	78
13	Defensive remodeling: How bacterial surface properties and biofilm formation promote resistance to antimicrobial peptides. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 3089-3100.	2.6	73
14	Host Defense Peptides and Lipopeptides: Modes of Action and Potential Candidates for the Treatment of Bacterial and Fungal Infections. Current Protein and Peptide Science, 2006, 7, 479-486.	1.4	72
15	Rapid entry of bitter and sweet tastants into liposomes and taste cells: implications for signal transduction. American Journal of Physiology - Cell Physiology, 2000, 278, C17-C25.	4.6	71
16	d-Amino acids incorporation in the frog skin-derived peptide esculentin-1a(1-21)NH2 is beneficial for its multiple functions. Amino Acids, 2015, 47, 2505-2519.	2.7	70
17	Multiparametric AFM reveals turgor-responsive net-like peptidoglycan architecture in live streptococci. Nature Communications, 2015, 6, 7193.	12.8	60
18	HIV-1 fusion peptide targets the TCR and inhibits antigen-specific T cell activation. Journal of Clinical Investigation, 2005, 115, 2149-2158.	8.2	60

YECHIEL SHAI

#	Article	IF	CITATIONS
19	The Identification of a Minimal Dimerization Motif QXXS That Enables Homo- and Hetero-association of Transmembrane Helices in Vivo. Journal of Biological Chemistry, 2005, 280, 27449-27457.	3.4	52
20	Androctonin, a hydrophilic disulphide-bridged non-haemolytic anti-microbial peptide: a plausible mode of action. Biochemical Journal, 2000, 345, 653-664.	3.7	51
21	Esculentin-1a-Derived Peptides Promote Clearance of Pseudomonas aeruginosa Internalized in Bronchial Cells of Cystic Fibrosis Patients and Lung Cell Migration: Biochemical Properties and a Plausible Mode of Action. Antimicrobial Agents and Chemotherapy, 2016, 60, 7252-7262.	3.2	47
22	Tâ€Cell inactivation and immunosuppressive activity induced by HIV gp41 via novel interacting motif. FASEB Journal, 2007, 21, 393-401.	0.5	40
23	Characterization of the HIV N-terminal Fusion Peptide-containing Region in Context of Key gp41 Fusion Conformations. Journal of Biological Chemistry, 2006, 281, 21755-21762.	3.4	37
24	Sendai Virus Internal Fusion Peptide:Â Structural and Functional Characterization and a Plausible Mode of Viral Entry Inhibitionâ€. Biochemistry, 2000, 39, 11581-11592.	2.5	35
25	The HIV-1 Envelope Transmembrane Domain Binds TLR2 through a Distinct Dimerization Motif and Inhibits TLR2-Mediated Responses. PLoS Pathogens, 2014, 10, e1004248.	4.7	33
26	Participation of Two Fusion Peptides in Measles Virus-Induced Membrane Fusion:Â Emerging Similarity with Other Paramyxoviruses. Biochemistry, 2001, 40, 1340-1349.	2.5	32
27	Hetero-assembly Between All-I- and All-d-Amino Acid Transmembrane Domains: Forces Involved and Implication for Inactivation of Membrane Proteins. Journal of Molecular Biology, 2004, 344, 855-864.	4.2	31
28	ATR-FTIR studies in pore forming and membrane induced fusion peptides. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2306-2313.	2.6	31
29	Neutralization of proâ€inflammatory monocytes by targeting TLR2 dimerization ameliorates colitis. EMBO Journal, 2016, 35, 685-698.	7.8	30
30	HIV-1 gp41 and TCRα Trans-Membrane Domains Share a Motif Exploited by the HIV Virus to Modulate T-Cell Proliferation. PLoS Pathogens, 2010, 6, e1001085.	4.7	28
31	Chirality-independent Protein–Protein Recognition Between Transmembrane Domains in Vivo. Journal of Molecular Biology, 2002, 322, 491-495.	4.2	26
32	Biohybrid Polymer-Antimicrobial Peptide Medium against Enterococcus faecalis. PLoS ONE, 2014, 9, e109413.	2.5	24
33	HIV-1 fusion protein exerts complex immunosuppressive effects. Trends in Biochemical Sciences, 2013, 38, 345-349.	7.5	18
34	A GxxxG-like Motif within HIV-1 Fusion Peptide Is Critical to Its Immunosuppressant Activity, Structure, and Interaction with the Transmembrane Domain of the T-cell Receptor. Journal of Biological Chemistry, 2012, 287, 33503-33511.	3.4	16
35	NMR structure and binding of esculentin-1a (1–21)NH 2 and its diastereomer to lipopolysaccharide: Correlation with biological functions. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 800-812.	2.6	16
36	Mode of Membrane Interaction and Fusogenic Properties of a de Novo Transmembrane Model Peptide Depend on the Length of the Hydrophobic Core. Journal of Biological Chemistry, 2007, 282, 18388-18396.	3.4	15

YECHIEL SHAI

#	Article	IF	CITATIONS
37	Functional Domains within Fusion Proteins: Prospectives for Development of Peptide Inhibitors of Viral Cell Fusion. Bioscience Reports, 2000, 20, 535-555.	2.4	14
38	The Transmembrane Domain of HIV-1 gp41 Inhibits T-Cell Activation by Targeting Multiple T-Cell Receptor Complex Components through Its GxxxG Motif. Biochemistry, 2016, 55, 1049-1057.	2.5	14
39	Early and late HIV-1 membrane fusion events are impaired by sphinganine lipidated peptides that target the fusion site. Biochemical Journal, 2014, 461, 213-222.	3.7	13
40	Bacterial resistance to antimicrobial peptides. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 3019-3020.	2.6	13
41	Sustained Release of Antibacterial Lipopeptides from Biodegradable Polymers against Oral Pathogens. PLoS ONE, 2016, 11, e0162537.	2.5	10
42	Methods for Investigating Biofilm Inhibition and Degradation by Antimicrobial Peptides. Methods in Molecular Biology, 2017, 1548, 309-322.	0.9	10
43	Why Bacillus thuringiensis insecticidal toxins are so effective: unique features of their mode of action. FEMS Microbiology Letters, 2001, 195, 1-8.	1.8	8
44	Interfering with the Dimerization of the ErbB Receptors by Transmembrane Domain-Derived Peptides Inhibits Tumorigenic Growth in Vitro and in Vivo. Biochemistry, 2016, 55, 5520-5530.	2.5	7
45	The HIV gp41 pocket binding domain enables C-terminal heptad repeat transition from mediating membrane fusion to immune modulation. Biochemical Journal, 2016, 473, 911-918.	3.7	7
46	Mode of action of linear amphipathic αâ€helical antimicrobial peptides. Biopolymers, 1998, 47, 451-463.	2.4	7
47	An Immunomodulating Motif of the HIV-1 Fusion Protein Is Chirality-independent. Journal of Biological Chemistry, 2013, 288, 32852-32860.	3.4	6
48	Mode of action of linear amphipathic \hat{l} ±-helical antimicrobial peptides. , 1998, 47, 451.		4
49	Proline localized to the interaction interface can mediate self-association of transmembrane domains. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2313-2318.	2.6	3
50	Mechanism of Membrane Permeation and Pore Formation by Antimicrobial Peptides. , 2006, , 187-217.		2
51	Response to "Interaction between HIV gp41 fusion peptide and T cell receptor: putting the puzzle pieces back together― FASEB Journal, 2007, 21, 1635-1635.	0.5	0
52	Kinetics and Thermodynamics of the Microgene Polymerization Reaction. Biophysical Journal, 2009, 96, 1673-1674.	0.5	0
53	The HTLV-1 gp21 fusion peptide inhibits antigen specific T-cell activation in-vitro and in mice. PLoS Pathogens, 2018, 14, e1007044.	4.7	0