Wang Liao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6505338/publications.pdf Version: 2024-02-01

WANGLIAO

#	Article	IF	CITATIONS
1	Latent curing epoxy system with excellent thermal stability, flame retardance and dielectric property. Chemical Engineering Journal, 2018, 347, 223-232.	12.7	181
2	Persistently flame-retardant flexible polyurethane foams by a novel phosphorus-containing polyol. Chemical Engineering Journal, 2018, 343, 198-206.	12.7	143
3	Flame-retardant and smoke-suppressant flexible polyurethane foams based on reactive phosphorus-containing polyol and expandable graphite. Journal of Hazardous Materials, 2018, 360, 651-660.	12.4	139
4	Nonflammable Alginate Nanocomposite Aerogels Prepared by a Simple Freeze-Drying and Post-Cross-Linking Method. ACS Applied Materials & Interfaces, 2016, 8, 643-650.	8.0	134
5	Inherently flame-retardant rigid polyurethane foams with excellent thermal insulation and mechanical properties. Polymer, 2018, 153, 616-625.	3.8	113
6	Highly Flame Retardant Expanded Polystyrene Foams from Phosphorus–Nitrogen–Silicon Synergistic Adhesives. Industrial & Engineering Chemistry Research, 2017, 56, 4649-4658.	3.7	87
7	Polyurethane foams with functionalized graphene towards high fire-resistance, low smoke release, superior thermal insulation. Chemical Engineering Journal, 2019, 361, 1245-1254.	12.7	83
8	Flame-Retardant Flexible Polyurethane Foams with Highly Efficient Melamine Salt. Industrial & Engineering Chemistry Research, 2017, 56, 7112-7119.	3.7	75
9	Ultrasoft gelatin aerogels for oil contaminant removal. Journal of Materials Chemistry A, 2016, 4, 9381-9389.	10.3	73
10	Novel Polymer Aerogel toward High Dimensional Stability, Mechanical Property, and Fire Safety. ACS Applied Materials & Interfaces, 2017, 9, 22985-22993.	8.0	72
11	Highly effective flame retarded polystyrene by synergistic effects between expandable graphite and aluminum hypophosphite. Polymer Degradation and Stability, 2018, 154, 1-9.	5.8	69
12	Coated vs. naked red phosphorus: A comparative study on their fire retardancy and smoke suppression for rigid polyurethane foams. Polymer Degradation and Stability, 2017, 136, 103-111.	5.8	68
13	Ultrahigh-Temperature Insulating and Fire-Resistant Aerogels from Cationic Amylopectin and Clay via a Facile Route. ACS Sustainable Chemistry and Engineering, 2019, 7, 11582-11592.	6.7	62
14	Flame-Retardant and Smoke-Suppressed Silicone Foams with Chitosan-Based Nanocoatings. Industrial & Engineering Chemistry Research, 2016, 55, 7239-7248.	3.7	61
15	A reactive phosphorus-containing polyol incorporated into flexible polyurethane foam: Self-extinguishing behavior and mechanism. Polymer Degradation and Stability, 2018, 153, 192-200.	5.8	59
16	On controlling aerogel microstructure by freeze casting. Composites Part B: Engineering, 2019, 173, 107036.	12.0	56
17	Robust and fire retardant borate-crosslinked poly (vinyl alcohol)/montmorillonite aerogel via melt-crosslink. Polymer, 2017, 131, 111-119.	3.8	55
18	Rejuvenated fly ash in poly(vinyl alcohol)-based composite aerogels with high fire safety and smoke suppression. Chemical Engineering Journal, 2017, 327, 992-999.	12.7	48

Wang Liao

#	Article	IF	CITATIONS
19	Flame retardation of cellulose-rich fabrics via a simplified layer-by-layer assembly. Carbohydrate Polymers, 2016, 151, 434-440.	10.2	41
20	Gelation Kinetics of Thermosensitive PNIPAM Microgel Dispersions. Macromolecular Chemistry and Physics, 2011, 212, 2052-2060.	2.2	40
21	Improvement of the flame retardancy of wood-fibre/polypropylene composites with ideal mechanical properties by a novel intumescent flame retardant system. RSC Advances, 2015, 5, 59865-59873.	3.6	32
22	Thermally stable and flame-retardant poly(vinyl alcohol)/montmorillonite aerogel via a facile heat treatment. Chinese Chemical Letters, 2018, 29, 433-436.	9.0	31
23	Fractal Structures of the Hydrogels Formed in Situ from Poly(N-isopropylacrylamide) Microgel Dispersions. Langmuir, 2012, 28, 10873-10880.	3.5	30
24	In situ generation of fluorescent silver nanoclusters in layer-by-layer assembled films. Journal of Materials Chemistry C, 2013, 1, 2036.	5.5	11
25	Rheological premonitory of nanoclay morphology on the mechanical characteristics of composite aerogels. Composites Part B: Engineering, 2019, 173, 106889.	12.0	11
26	Ultra-strong mechanical property and force-driven malleability of water-poor hydrogels. Journal of Colloid and Interface Science, 2019, 542, 281-288.	9.4	9
27	Novel Layered Double Hydroxides@carboxymethyl Cellulose Composite Aerogel Towards Co(II) Absorption. Journal of Polymers and the Environment, 2022, 30, 3779-3790.	5.0	1