Changmin Shao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6505277/publications.pdf

Version: 2024-02-01

26 papers 1,539 citations

361413 20 h-index 26 g-index

27 all docs

27 docs citations

times ranked

27

1784 citing authors

#	Article	IF	CITATIONS
1	Biomimetic enzyme cascade reaction system in microfluidic electrospray microcapsules. Science Advances, 2018, 4, eaat2816.	10.3	277
2	Antibacterial and angiogenic chitosan microneedle array patch for promoting wound healing. Bioactive Materials, 2020, 5, 253-259.	15.6	255
3	Responsive Inverse Opal Scaffolds with Biomimetic Enrichment Capability for Cell Culture. Research, 2019, 2019, 9783793.	5.7	124
4	Cardiomyocyte-Driven Structural Color Actuation in Anisotropic Inverse Opals. ACS Nano, 2019, 13, 796-802.	14.6	99
5	Graphene Hybrid Anisotropic Structural Color Film for Cardiomyocytes' Monitoring. Advanced Functional Materials, 2020, 30, 1906353.	14.9	63
6	Porous scaffolds from droplet microfluidics for prevention of intrauterine adhesion. Acta Biomaterialia, 2019, 84, 222-230.	8.3	60
7	Chinese herb microneedle patch for wound healing. Bioactive Materials, 2021, 6, 3507-3514.	15.6	60
8	Microfluidic 3D Printing Responsive Scaffolds with Biomimetic Enrichment Channels for Bone Regeneration. Advanced Functional Materials, 2021, 31, 2105190.	14.9	59
9	Bioinspired Helical Micromotors as Dynamic Cell Microcarriers. ACS Applied Materials & Samp; Interfaces, 2020, 12, 16097-16103.	8.0	54
10	Bio-inspired wettability patterns for biomedical applications. Materials Horizons, 2021, 8, 124-144.	12.2	52
11	Bioinspired Photonic Barcodes with Graphene Oxide Encapsulation for Multiplexed MicroRNA Quantification. Small, 2018, 14, e1803551.	10.0	46
12	Tofu-inspired microcarriers from droplet microfluidics for drug delivery. Science China Chemistry, 2019, 62, 87-94.	8.2	42
13	Mesoporous Colloidal Photonic Crystal Particles for Intelligent Drug Delivery. ACS Applied Materials & Samp; Interfaces, 2018, 10, 33936-33944.	8.0	38
14	Photocontrolled Healable Structural Color Hydrogels. Small, 2019, 15, e1903104.	10.0	36
15	Droplet Microarray on Patterned Butterfly Wing Surfaces for Cell Spheroid Culture. Langmuir, 2019, 35, 3832-3839.	3.5	36
16	Droplet microfluidics-based biomedical microcarriers. Acta Biomaterialia, 2022, 138, 21-33.	8.3	35
17	Generating Microdroplet Array on Photonic Pseudo-paper for Absolute Quantification of Nucleic Acids. ACS Applied Materials & Samp; Interfaces, 2018, 10, 39144-39150.	8.0	34
18	Development of Cell Spheroids by Advanced Technologies. Advanced Materials Technologies, 2020, 5, 2000183.	5.8	32

#	Article	IF	CITATIONS
19	Living Materials for Life Healthcare. Accounts of Materials Research, 2021, 2, 59-70.	11.7	30
20	Egg Component-Composited Inverse Opal Particles for Synergistic Drug Delivery. ACS Applied Materials & Drug Delivery. ACS Applied Mater	8.0	22
21	Hierarchical Hydrogels with Ordered Micro-Nano Structures for Cancer-on-a-Chip Construction. Research, 2021, 2021, 9845679.	5.7	21
22	Superwettable colloidal crystal micropatterns on butterfly wing surface for ultrasensitive detection. Journal of Colloid and Interface Science, 2019, 546, 122-129.	9.4	20
23	Magnetically responsive colloidal crystals with angle-independent gradient structural colors in microfluidic droplet arrays. Nanoscale, 2019, 11, 12898-12904.	5.6	17
24	Microfluidic droplet templates derived porous patch with anisotropic wettability. Chemical Engineering Journal, 2021, 417, 128073.	12.7	16
25	Porous hydrogel arrays for hepatoma cell spheroid formation and drug resistance investigation. Bio-Design and Manufacturing, 2021, 4, 842-850.	7.7	9
26	Bioinspired Photonic Barcodes: Bioinspired Photonic Barcodes with Graphene Oxide Encapsulation for Multiplexed MicroRNA Quantification (Small 52/2018). Small, 2018, 14, 1870255.	10.0	2