Lin-Long Deng

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6505253/lin-long-deng-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

33	1, 000 citations	17	31
papers		h-index	g-index
34 ext. papers	1,178 ext. citations	8.9 avg, IF	4.3 L-index

#	Paper	IF	Citations
33	Corannulene-based hole-transporting material for efficient and stable perovskite solar cells. <i>Cell Reports Physical Science</i> , 2021 , 2, 100662	6.1	5
32	Radiation-processed perovskite solar cells with fullerene-enhanced performance and stability. <i>Cell Reports Physical Science</i> , 2021 , 2, 100646	6.1	2
31	Isomer-Dependent Photovoltaic Properties of the [6,6]-Phenyl-C61 (or C71)-Butyric Acid Methyl Esters. <i>Solar Rrl</i> , 2021 , 5, 2000816	7.1	3
30	Cross-linkable fullerene interfacial contacts for enhancing humidity stability of inverted perovskite solar cells. <i>Rare Metals</i> , 2021 , 40, 1691-1697	5.5	4
29	Low-Temperature Aging Provides 22% Efficient Bromine-Free and Passivation Layer-Free Planar Perovskite Solar Cells. <i>Nano-Micro Letters</i> , 2020 , 12, 84	19.5	20
28	Star-like hexakis[di(ethoxycarbonyl)methano]-C60 with higher electron mobility: An unexpected electron extractor interfaced in photovoltaic perovskites. <i>Nano Energy</i> , 2020 , 74, 104859	17.1	10
27	The mechanism of universal green antisolvents for intermediate phase controlled high-efficiency formamidinium-based perovskite solar cells. <i>Materials Horizons</i> , 2020 , 7, 934-942	14.4	32
26	Mixed Fullerene Electron Transport Layers with Fluorocarbon Chains Assembling on the Surface: A Moisture-Resistant Coverage for Perovskite Solar Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 35081-35087	9.5	9
25	Hybrid Fullerene-Based Electron Transport Layers Improving the Thermal Stability of Perovskite Solar Cells. <i>ACS Applied Materials & Solar Cells. ACS Applied Materials & Mate</i>	9.5	21
24	Pyridine-Functionalized Fullerene Electron Transport Layer for Efficient Planar Perovskite Solar Cells. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 11, 23982-23989	9.5	25
23	[6,6]-Phenyl-C-Butyric Acid Methyl Ester/Cerium Oxide Bilayer Structure as Efficient and Stable Electron Transport Layer for Inverted Perovskite Solar Cells. <i>ACS Nano</i> , 2018 , 12, 2403-2414	16.7	86
22	Photovoltaic performance and stability of fullerene/cerium oxide double electron transport layer superior to single one in p-i-n perovskite solar cells. <i>Journal of Power Sources</i> , 2018 , 389, 13-19	8.9	12
21	Interfacing Pristine C60 onto TiO2 for Viable Flexibility in Perovskite Solar Cells by a Low-Temperature All-Solution Process. <i>Advanced Energy Materials</i> , 2018 , 8, 1800399	21.8	57
20	Formulation of PC71BM isomers in P3HT-based polymer solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2018 , 176, 340-345	6.4	7
19	Fullerene-Based Materials for Photovoltaic Applications: Toward Efficient, Hysteresis-Free, and Stable Perovskite Solar Cells. <i>Advanced Electronic Materials</i> , 2018 , 4, 1700435	6.4	74
18	From C60Ph5Cl to C60Ph6: complete phenylation of C60 derivative renders superior organic photovoltaic performance. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 12721-12727	7.1	4
17	Solution-Processed Cu(In, Ga)(S, Se) Nanocrystal as Inorganic Hole-Transporting Material for Efficient and Stable Perovskite Solar Cells. <i>Nanoscale Research Letters</i> , 2017 , 12, 159	5	31

LIST OF PUBLICATIONS

16	Two cyclohexanofullerenes used as electron transport materials in perovskite solar cells. <i>Inorganica Chimica Acta</i> , 2017 , 468, 146-151	2.7	9
15	Cerium oxide standing out as an electron transport layer for efficient and stable perovskite solar cells processed at low temperature. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 1706-1712	13	90
14	Di-isopropyl ether assisted crystallization of organic-inorganic perovskites for efficient and reproducible perovskite solar cells. <i>Nanoscale</i> , 2017 , 9, 17893-17901	7.7	13
13	Pristine fullerenes mixed by vacuum-free solution process: Efficient electron transport layer for planar perovskite solar cells. <i>Journal of Power Sources</i> , 2017 , 339, 27-32	8.9	27
12	Tailorable PC BM Isomers: Using the Most Prevalent Electron Acceptor to Obtain High-Performance Polymer Solar Cells. <i>Chemistry - A European Journal</i> , 2016 , 22, 18709-18713	4.8	13
11	Stereomeric effects of bisPC 71 BM on polymer solar cell performance. <i>Science Bulletin</i> , 2016 , 61, 132-1	38 5.6	25
10	Theoretical insight into the stereometric effect of bisPC 71 BM on polymer cell performance. <i>Science Bulletin</i> , 2016 , 61, 139-147	10.6	17
9	Formulation engineering for optimizing ternary electron acceptors exemplified by isomeric PC71BM in planar perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 18776-18782	13	22
8	Efficient Perovskite Solar Cells Depending on TiO2 Nanorod Arrays. <i>ACS Applied Materials & ACS Applied Materials & Interfaces</i> , 2016 , 8, 21358-65	9.5	102
7	Low-cost solution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 19353-19359	13	191
6	Bis-adducts of benzocyclopentane- and acenaphthene-C60 superior to mono-adducts as electron acceptors in polymer solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2014 , 125, 198-205	6.4	11
5	High LUMO energy level C60(OCH3)4 derivatives: Electronic acceptors for photovoltaic cells with higher open-circuit voltage. <i>Solar Energy Materials and Solar Cells</i> , 2013 , 111, 193-199	6.4	19
4	Combustion synthesis and electrochemical properties of the small hydrofullerene C50H10. <i>Chemistry - A European Journal</i> , 2012 , 18, 3408-15	4.8	13
3	Functionalized dihydronaphthyl-C60 derivatives as acceptors for efficient polymer solar cells with tunable photovoltaic properties. <i>Solar Energy Materials and Solar Cells</i> , 2012 , 104, 113-120	6.4	24
2	Retrieving the most prevalent small fullerene C56. Chemistry - A European Journal, 2011, 17, 8529-32	4.8	19
1	Crystallographic Understanding of Photoelectric Properties for C60 Derivatives Applicable as Electron Transporting Materials in Perovskite Solar Cells. <i>Chemical Research in Chinese Universities</i> ,1	2.2	3