Rachel B Brem

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6505144/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic Dissection of Transcriptional Regulation in Budding Yeast. Science, 2002, 296, 752-755.	6.0	1,261
2	The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1572-1577.	3.3	544
3	A Comprehensive Analysis of Replicative Lifespan in 4,698 Single-Gene Deletion Strains Uncovers Conserved Mechanisms of Aging. Cell Metabolism, 2015, 22, 895-906.	7.2	212
4	HTR7 Mediates Serotonergic Acute and Chronic Itch. Neuron, 2015, 87, 124-138.	3.8	160
5	Peripheral Circadian Clocks Mediate Dietary Restriction-Dependent Changes in Lifespan and Fat Metabolism in Drosophila. Cell Metabolism, 2016, 23, 143-154.	7.2	139
6	Neutrophils promote CXCR3-dependent itch in the development of atopic dermatitis. ELife, 2019, 8, .	2.8	99
7	Functional genomics of lipid metabolism in the oleaginous yeast Rhodosporidium toruloides. ELife, 2018, 7, .	2.8	98
8	Polygenic and directional regulatory evolution across pathways in <i>Saccharomyces</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5058-5063.	3.3	93
9	Expression Profiling of the Wheat Pathogen Zymoseptoria tritici Reveals Genomic Patterns of Transcription and Host-Specific Regulatory Programs. Genome Biology and Evolution, 2014, 6, 1353-1365.	1.1	92
10	Polygenic evolution of a sugar specialization trade-off in yeast. Nature, 2016, 530, 336-339.	13.7	58
11	Inferring Evolutionary Histories of Pathway Regulation from Transcriptional Profiling Data. PLoS Computational Biology, 2013, 9, e1003255.	1.5	54
12	Genetics and Regulatory Impact of Alternative Polyadenylation in Human B-Lymphoblastoid Cells. PLoS Genetics, 2012, 8, e1002882.	1.5	51
13	S1PR3 Mediates Itch and Pain via Distinct TRP Channel-Dependent Pathways. Journal of Neuroscience, 2018, 38, 7833-7843.	1.7	51
14	Life span extension by glucose restriction is abrogated by methionine supplementation: Cross-talk between glucose and methionine and implication of methionine as a key regulator of life span. Science Advances, 2020, 6, eaba1306.	4.7	49
15	Genetic and metabolomic architecture of variation in diet restriction-mediated lifespan extension in Drosophila. PLoS Genetics, 2020, 16, e1008835.	1.5	49
16	Genetic dissection of interspecific differences in yeast thermotolerance. Nature Genetics, 2018, 50, 1501-1504.	9.4	43
17	The Star-Nosed Mole Reveals Clues to the Molecular Basis of Mammalian Touch. PLoS ONE, 2013, 8, e55001.	1.1	41
18	Cross-phenotype association tests uncover genes mediating nutrient response in Drosophila. BMC Genomics, 2016, 17, 867.	1.2	38

RACHEL B BREM

#	Article	IF	CITATIONS
19	GWAS for Lifespan and Decline in Climbing Ability in Flies upon Dietary Restriction Reveal decima as a Mediator of Insulin-like Peptide Production. Current Biology, 2020, 30, 2749-2760.e3.	1.8	34
20	The signaling lipid sphingosine 1-phosphate regulates mechanical pain. ELife, 2018, 7, .	2.8	32
21	Evolution of a Membrane Protein Regulon in Saccharomyces. Molecular Biology and Evolution, 2012, 29, 1747-1756.	3.5	24
22	Potassium restriction boosts vacuolar acidity and extends lifespan in yeast. Experimental Gerontology, 2019, 120, 101-106.	1.2	10
23	Joint effects of genes underlying a temperature specialization tradeoff in yeast. PLoS Genetics, 2021, 17, e1009793.	1.5	10
24	A chromosomal-level reference genome of the widely utilized <i>Coccidioides posadasii</i> laboratory strain "Silveira― G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	10
25	Musashi expression in intestinal stem cells attenuates radiation-induced decline in intestinal permeability and survival in Drosophila. Scientific Reports, 2020, 10, 19080.	1.6	8
26	Dissecting Trait Variation across Species Barriers. Trends in Ecology and Evolution, 2019, 34, 1131-1136.	4.2	7
27	Barcoded reciprocal hemizygosity analysis <i>via</i> sequencing illuminates the complex genetic basis of yeast thermotolerance. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	7
28	Genealogy-Based Methods for Inference of Historical Recombination and Gene Flow and Their Application in Saccharomyces cerevisiae. PLoS ONE, 2012, 7, e46947.	1.1	6
29	The Role of Transcription Factors at Antisense-Expressing Gene Pairs in Yeast. Genome Biology and Evolution, 2016, 8, 1748-1761.	1.1	6
30	Population and comparative genetics of thermotolerance divergence between yeast species. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	6
31	Divergence of Peroxisome Membrane Gene Sequence and Expression Between Yeast Species. G3: Genes, Genomes, Genetics, 2020, 10, 2079-2085.	0.8	3
32	Cold Survival and Its Molecular Mechanisms in a Locally Adapted Nematode Population. Genome Biology and Evolution, 2021, 13, .	1.1	3
33	Evolution: The Genetics of Milk Champagne Yeast. Current Biology, 2019, 29, R248-R250.	1.8	1
34	A fly GWAS for purine metabolites identifies human FAM214 homolog medusa, which acts in a conserved manner to enhance hyperuricemia-driven pathologies by modulating purine metabolism and the inflammatory response. GeroScience, 2022, 44, 2195-2211.	2.1	1
35	Genetic Mapping of Thermotolerance Differences Between Species of Saccharomyces Yeast via Genome-Wide Reciprocal Hemizygosity Analysis. Journal of Visualized Experiments, 2019, , .	0.2	0

#	Article	IF	CITATIONS
37	Title is missing!. , 2020, 16, e1008835.		0
38	Title is missing!. , 2020, 16, e1008835.		0
39	Title is missing!. , 2020, 16, e1008835.		0
40	Temperature-Dependent Genetics of Thermotolerance Between Yeast Species. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	0