List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6504837/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews, 2015, 44, 7484-7539.	18.7	2,723
2	A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chemical Society Reviews, 2014, 43, 631-675.	18.7	2,360
3	Alkaline polymer electrolyte membranes for fuel cell applications. Chemical Society Reviews, 2013, 42, 5768.	18.7	540
4	A review of high temperature co-electrolysis of H ₂ O and CO ₂ to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology. Chemical Society Reviews, 2017, 46, 1427-1463.	18.7	515
5	A Review of Grapheneâ€Based Nanostructural Materials for Both Catalyst Supports and Metalâ€Free Catalysts in PEM Fuel Cell Oxygen Reduction Reactions. Advanced Energy Materials, 2014, 4, 1301523.	10.2	416
6	A review on water balance in the membrane electrode assembly of proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2009, 34, 9461-9478.	3.8	342
7	Harvesting the Vibration Energy of BiFeO ₃ Nanosheets for Hydrogen Evolution. Angewandte Chemie - International Edition, 2019, 58, 11779-11784.	7.2	277
8	A flexible solid-state electrolyte for wide-scale integration of rechargeable zinc–air batteries. Energy and Environmental Science, 2016, 9, 663-670.	15.6	275
9	New highly proton-conducting membrane poly(vinylpyrrolidone)(PVP) modified poly(vinyl) Tj ETQq1 1 0.784314 methanol fuel cells (DMFCs). Polymer, 2005, 46, 10809-10816.	rgBT /Ove 1.8	erlock 10 Tf 5 213
10	Nitrogen-Doped Carbon Nanotube and Graphene Materials for Oxygen Reduction Reactions. Catalysts, 2015, 5, 1574-1602.	1.6	183
11	"More is Different:―Synergistic Effect and Structural Engineering in Doubleâ€Atom Catalysts. Advanced Functional Materials, 2021, 31, 2007423.	7.8	179
12	Application of phosphoric acid and phytic acid-doped bacterial cellulose as novel proton-conducting membranes to PEMFC. International Journal of Hydrogen Energy, 2012, 37, 9182-9192.	3.8	167
13	Highly Efficient Porous Carbon Electrocatalyst with Controllable Nâ€Species Content for Selective CO ₂ Reduction. Angewandte Chemie - International Edition, 2020, 59, 3244-3251.	7.2	167
14	3-Dimensional porous N-doped graphene foam as a non-precious catalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 3343-3350.	5.2	163
15	Efficient quantum dots anchored nanocomposite for highly active ORR/OER electrocatalyst of advanced metal-air batteries. Nano Energy, 2019, 57, 176-185.	8.2	162
16	Alkaline solid polymer electrolyte membranes based on structurally modified PVA/PVP with improved alkali stability. Polymer, 2010, 51, 4850-4859.	1.8	157
17	Degradation of Perfluorinated Ionomer Membranes for PEM Fuel Cells during Processing with H[sub 2]O[sub 2]. Journal of the Electrochemical Society, 2006, 153, A967.	1.3	134
18	Ultra-long life rechargeable zinc-air battery based on high-performance trimetallic nitride and NCNT hybrid bifunctional electrocatalysts. Nano Energy, 2019, 61, 86-95.	8.2	134

#	Article	IF	CITATIONS
19	Chemically Modified Poly(vinyl alcohol)â^'Poly(2-acrylamido-2-methyl-1-propanesulfonic acid) as a Novel Proton-Conducting Fuel Cell Membrane. Chemistry of Materials, 2005, 17, 2413-2421.	3.2	123
20	Atomically Dispersed Transition Metal-Nitrogen-Carbon Bifunctional Oxygen Electrocatalysts for Zinc-Air Batteries: Recent Advances and Future Perspectives. Nano-Micro Letters, 2022, 14, 36.	14.4	117
21	Proton exchange membrane fuel cell degradation under close to open-circuit conditions. Journal of Power Sources, 2010, 195, 1171-1176.	4.0	112
22	Freeâ€Standing Functionalized Graphene Oxide Solid Electrolytes in Electrochemical Gas Sensors. Advanced Functional Materials, 2016, 26, 1729-1736.	7.8	110
23	PEM fuel cell electrocatalysts based on transition metal macrocyclic compounds. Coordination Chemistry Reviews, 2016, 315, 153-177.	9.5	110
24	Hydroxide ion conducting polymer electrolytes and their applications in solid supercapacitors: A review. Energy Storage Materials, 2020, 24, 6-21.	9.5	108
25	Enhancing CO2 electrolysis to formate on facilely synthesized Bi catalysts at low overpotential. Applied Catalysis B: Environmental, 2017, 218, 46-50.	10.8	101
26	Fe/Co Double Hydroxide/Oxide Nanoparticles on Nâ€Doped CNTs as Highly Efficient Electrocatalyst for Rechargeable Liquid and Quasiâ€Solidâ€State Zinc–Air Batteries. Advanced Energy Materials, 2018, 8, 1801836.	10.2	94
27	Unravelling the origin of bifunctional OER/ORR activity for single-atom catalysts supported on C ₂ N by DFT and machine learning. Journal of Materials Chemistry A, 2021, 9, 16860-16867.	5.2	93
28	New highly proton conductive polymer membranes poly(vinyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 387 Td (alco 2005, 15, 4414.	ohol)–2- 6.7	acrylamido-2 91
29	Co ₃ O ₄ /MnO ₂ /Hierarchically Porous Carbon as Superior Bifunctional Electrodes for Liquid and All-Solid-State Rechargeable Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2018, 10, 15591-15601.	4.0	89
30	3D core–shell porous-structured Cu@Sn hybrid electrodes with unprecedented selective CO ₂ -into-formate electroreduction achieving 100%. Journal of Materials Chemistry A, 2019, 7, 3197-3205.	5.2	88
31	Self-growing Cu/Sn bimetallic electrocatalysts on nitrogen-doped porous carbon cloth with 3D-hierarchical honeycomb structure for highly active carbon dioxide reduction. Applied Catalysis B: Environmental, 2020, 264, 118447.	10.8	88
32	Free-radical-initiated strategy aiming for pitch-based dual-doped carbon nanosheets engaged into high-energy asymmetric supercapacitors. Energy Storage Materials, 2020, 26, 119-128.	9.5	85
33	Graphiticâ€shell encapsulated FeNi alloy/nitride nanocrystals on biomassâ€derived Nâ€doped carbon as an efficient electrocatalyst for rechargeable Znâ€air battery. , 2021, 3, 176-187.		85
34	Scalable synthesis of hierarchical macropore-rich activated carbon microspheres assembled by carbon nanoparticles for high rate performance supercapacitors. Journal of Power Sources, 2017, 342, 363-370.	4.0	83
35	Highly active electrocatalysts for oxygen reduction from carbon-supported copper-phthalocyanine synthesized by high temperature treatment. International Journal of Hydrogen Energy, 2012, 37, 14103-14113.	3.8	82
36	Novel hierarchical SnO2 microsphere catalyst coated on gas diffusion electrode for enhancing energy efficiency of CO2 reduction to formate fuel. Applied Energy, 2016, 175, 536-544.	5.1	82

#	ARTICLE	IF	CITATIONS
0.5	Highly stable hydroxyl anion conducting membranes poly(vinyl) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 747		
37	Effect of cross-linking. International Journal of Hydrogen Energy, 2012, 37, 4580-4589.	3.8	81
38	A review of radiation-grafted polymer electrolyte membranes for alkaline polymer electrolyte membrane fuel cells. Journal of Power Sources, 2015, 293, 946-975.	4.0	80
39	Cross-linked poly(vinyl alcohol)/poly (diallyldimethylammonium chloride) as anion-exchange membrane for fuel cell applications. Journal of Power Sources, 2013, 240, 359-367.	4.0	78
40	Alkali doped poly(vinyl alcohol) for potential fuel cell applications. Synthetic Metals, 2010, 160, 193-199.	2.1	75
41	Harvesting the Vibration Energy of BiFeO ₃ Nanosheets for Hydrogen Evolution. Angewandte Chemie, 2019, 131, 11905-11910.	1.6	75
42	Controllable Hortensia-like MnO ₂ Synergized with Carbon Nanotubes as an Efficient Electrocatalyst for Long-Term Metal–Air Batteries. ACS Applied Materials & Interfaces, 2019, 11, 578-587.	4.0	72
43	Formation of Cu nanostructured electrode surfaces by an annealing–electroreduction procedure to achieve high-efficiency CO2 electroreduction. Electrochemistry Communications, 2014, 38, 8-11.	2.3	71
44	Facile synthesis of NiCo2O4 nanosphere-carbon nanotubes hybrid as an efficient bifunctional electrocatalyst for rechargeable Zn–air batteries. International Journal of Hydrogen Energy, 2016, 41, 9211-9218.	3.8	71
45	A large-scale synthesis of heteroatom (N and S) co-doped hierarchically porous carbon (HPC) derived from polyquaternium for superior oxygen reduction reactivity. Green Chemistry, 2016, 18, 2699-2709.	4.6	70
46	High-performance binary cross-linked alkaline anion polymer electrolyte membranes for all-solid-state supercapacitors and flexible rechargeable zinc–air batteries. Journal of Materials Chemistry A, 2019, 7, 11257-11264.	5.2	70
47	Morphology controlled La2O3/Co3O4/MnO2–CNTs hybrid nanocomposites with durable bi-functional air electrode in high-performance zinc–air energy storage. Applied Energy, 2016, 175, 495-504.	5.1	68
48	<i>In situ</i> growth of CoP nanoparticles anchored on (N,P) co-doped porous carbon engineered by MOFs as advanced bifunctional oxygen catalyst for rechargeable Zn–air battery. Journal of Materials Chemistry A, 2020, 8, 19043-19049.	5.2	68
49	Small mesopore engineering of pitch-based porous carbons toward enhanced supercapacitor performance. Chemical Engineering Journal, 2020, 399, 125818.	6.6	68
50	High durable poly(vinyl alcohol)/Quaterized hydroxyethylcellulose ethoxylate anion exchange membranes for direct methanol alkaline fuel cells. Journal of Power Sources, 2013, 227, 291-299.	4.0	63
51	Effects of transition metal precursors (Co, Fe, Cu, Mn, or Ni) on pyrolyzed carbon supported metal-aminopyrine electrocatalysts for oxygen reduction reaction. RSC Advances, 2015, 5, 6195-6206.	1.7	63
52	Separated growth of Bi-Cu bimetallic electrocatalysts on defective copper foam for highly converting CO2 to formate with alkaline anion-exchange membrane beyond KHCO3 electrolyte. Applied Catalysis B: Environmental, 2021, 288, 120003.	10.8	63
53	N/S-Me (Fe, Co, Ni) doped hierarchical porous carbons for fuel cell oxygen reduction reaction with high catalytic activity and long-term stability. Applied Energy, 2016, 175, 468-478.	5.1	62
54	Heteroatom (B, N and P) doped porous graphene foams for efficient oxygen reduction reaction electron electrocatalysis. International Journal of Hydrogen Energy, 2018, 43, 12661-12670.	3.8	62

#	Article	IF	CITATIONS
55	High-performing rechargeable/flexible zinc-air batteries by coordinated hierarchical Bi-metallic electrocatalyst and heterostructure anion exchange membrane. Nano Energy, 2019, 65, 104021.	8.2	62
56	Flexible self-supported bi-metal electrode as a highly stable carbon- and binder-free cathode for large-scale solid-state zinc-air batteries. Applied Catalysis B: Environmental, 2020, 272, 118953.	10.8	62
57	A self-supported electrode as a high-performance binder- and carbon-free cathode for rechargeable hybrid zinc batteries. Energy Storage Materials, 2020, 24, 272-280.	9.5	61
58	Carbonâ€based metalâ€free catalysts for electrochemical CO ₂ reduction: Activity, selectivity, and stability. , 2021, 3, 24-49.		60
59	Metal–Nitrogen–Carbon Catalysts of Specifically Coordinated Configurations toward Typical Electrochemical Redox Reactions. Advanced Materials, 2021, 33, e2100997.	11.1	60
60	Nitrogen and Sulfur Co-doped Mesoporous Carbon Materials as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction. Electrochimica Acta, 2014, 145, 259-269.	2.6	59
61	Rational Surface Tailoring Oxygen Functional Groups on Carbon Spheres for Capacitive Mechanistic Study. ACS Applied Materials & Interfaces, 2019, 11, 13214-13224.	4.0	58
62	Preparation of Nitrogen and Sulfur dual-doped Mesoporous Carbon for Supercapacitor Electrodes with Long Cycle Stability. Electrochimica Acta, 2015, 177, 327-334.	2.6	57
63	Self-assembly formation of Bi-functional Co3O4/MnO2-CNTs hybrid catalysts for achieving both high energy/power density and cyclic ability of rechargeable zinc-air battery. Scientific Reports, 2016, 6, 33590.	1.6	57
64	CoFe2O4 nanoparticles decorated carbon nanotubes: Air-cathode bifunctional catalysts for rechargeable zinc-air batteries. Catalysis Today, 2018, 318, 144-149.	2.2	57
65	Rational Design and Synthesis of SnO _{<i>x</i>} Electrocatalysts with Coralline Structure for Highly Improved Aqueous CO ₂ Reduction to Formate. ChemElectroChem, 2016, 3, 1618-1628.	1.7	56
66	Aqueous CO ₂ reduction on morphology controlled Cu _x O nanocatalysts at low overpotential. RSC Advances, 2014, 4, 44583-44591.	1.7	55
67	Polybenzimidazoles with pendant quaternary ammonium groups as potential anion exchange membranes for fuel cells. Journal of Membrane Science, 2012, 390-391, 152-159.	4.1	53
68	Highly-active copper oxide/copper electrocatalysts induced from hierarchical copper oxide nanospheres for carbon dioxide reduction reaction. Electrochimica Acta, 2015, 153, 559-565.	2.6	53
69	Alkaline Exchange Polymer Membrane Electrolyte for High Performance of All-Solid-State Electrochemical Devices. ACS Applied Materials & Interfaces, 2018, 10, 29593-29598.	4.0	52
70	Harvesting honeycomb-like carbon nanosheets with tunable mesopores from mild-modified coal tar pitch for high-performance flexible all-solid-state supercapacitors. Journal of Power Sources, 2020, 448, 227446.	4.0	52
71	Hierarchical porous N-doped graphene foams with superior oxygen reduction reactivity for polymer electrolyte membrane fuel cells. Applied Energy, 2016, 175, 459-467.	5.1	51
72	Using pyridine as nitrogen-rich precursor to synthesize Co-N-S/C non-noble metal electrocatalysts for oxygen reduction reaction. Applied Catalysis B: Environmental, 2012, 125, 197-205.	10.8	50

#	Article	IF	CITATIONS
73	3D hollow sphere Co3O4/MnO2-CNTs: Its high-performance bi-functional cathode catalysis and application in rechargeable zinc-air battery. Green Energy and Environment, 2017, 2, 316-328.	4.7	50
74	Polyethylene glycol induced reconstructing Bi nanoparticle size for stabilized CO2 electroreduction to formate. Journal of Catalysis, 2018, 365, 63-70.	3.1	50
75	Electrochemical Reduction of CO ₂ by SnO _{<i>x</i>} Nanosheets Anchored on Multiwalled Carbon Nanotubes with Tunable Functional Groups. ChemSusChem, 2019, 12, 1443-1450.	3.6	50
76	Novel Alkaline Anion-exchange Membranes Based on Chitosan/Ethenylmethylimidazoliumchloride Polymer with Ethenylpyrrolidone Composites for Low Temperature Polymer Electrolyte Fuel Cells. Electrochimica Acta, 2015, 177, 137-144.	2.6	47
77	Template-free synthesis of hierarchical yolk-shell Co and N codoped porous carbon microspheres with enhanced performance for oxygen reduction reaction. Journal of Power Sources, 2015, 288, 128-135.	4.0	46
78	Uncovering the nature of electroactive sites in nano architectured dendritic Bi for highly efficient CO2 electroreduction to formate. Applied Catalysis B: Environmental, 2020, 274, 119031.	10.8	46
79	High molecular weight PVA-modified PVA/PAMPS proton-conducting membranes with increased stability and their application in DMFCs. Solid State Ionics, 2009, 180, 1318-1323.	1.3	45
80	Fe/N/S-composited hierarchically porous carbons with optimized surface functionality, composition and nanoarchitecture as electrocatalysts for oxygen reduction reaction. Journal of Catalysis, 2017, 352, 208-217.	3.1	44
81	Anion conducting poly(vinyl alcohol)/poly(diallyldimethylammonium chloride) membranes with high durable alkaline stability for polymer electrolyte membrane fuel cells. Journal of Power Sources, 2013, 237, 1-4.	4.0	43
82	Template-free synthesis of three-dimensional nanoporous N-doped graphene for high performance fuel oxygen reduction reaction in alkaline media. Applied Energy, 2016, 175, 405-413.	5.1	43
83	Simultaneous formation of nitrogen and sulfur-doped transition metal catalysts for oxygen reduction reaction through pyrolyzing carbon-supported copper phthalocyanine tetrasulfonic acid tetrasodium salt. Journal of Power Sources, 2014, 266, 88-98.	4.0	41
84	Bismuth Anchored on MWCNTs with Controlled Ultrafine Nanosize Enables High-Efficient Electrochemical Reduction of Carbon Dioxide to Formate Fuel. ACS Sustainable Chemistry and Engineering, 2020, 8, 4871-4876.	3.2	40
85	Metal–Organic-Frameworks-Derived Cu/Cu ₂ O Catalyst with Ultrahigh Current Density for Continuous-Flow CO ₂ Electroreduction. ACS Sustainable Chemistry and Engineering, 2019, 7, 15739-15746.	3.2	39
86	The design of Fe, N-doped hierarchically porous carbons as highly active and durable electrocatalysts for a Zn–air battery. Physical Chemistry Chemical Physics, 2016, 18, 18665-18669.	1.3	37
87	Kinetics and electrocatalytic activity of nanostructured Ir–V/C for oxygen reduction reaction. Electrochimica Acta, 2010, 55, 8490-8497.	2.6	36
88	Superior stability of a bifunctional oxygen electrode for primary, rechargeable and flexible Zn–air batteries. Nanoscale, 2018, 10, 13626-13637.	2.8	36
89	Proton conducting behavior of a novel polymeric gel membrane based on poly(ethylene) Tj ETQq1 1 0.784314	1 rgBT /Overl	ock_10 Tf 50
90	Synthesis and properties of chemically cross-linked poly(vinyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 67 Td (alc membranes. Solid State Ionics, 2012, 214, 6-12.	cohol)–pol 1.3	y(acrylamide- 35

#	Article	IF	CITATIONS
91	Hydroxyl anion conducting membranes poly(vinyl alcohol)/poly(diallyldimethylammonium chloride) for alkaline fuel cell applications: Effect of molecular weight. Electrochimica Acta, 2013, 111, 351-358.	2.6	35
92	Lattice reconstruction of La-incorporated CsPbI ₂ Br with suppressed phase transition for air-processed all-inorganic perovskite solar cells. Journal of Materials Chemistry C, 2020, 8, 3351-3358.	2.7	35
93	Electrochemical Performance of Carbon-Supported Co-Phthalocyanine Modified with Co-Added Metals (M = Fe, Co, Ni, V) for Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2012, 159, F577-F584.	1.3	34
94	Self-assembly formation of hollow Ni-Fe-O nanocage architectures by metal-organic frameworks with high-performance lithium storage. Scientific Reports, 2015, 5, 13310.	1.6	34
95	Electrochemical behavior of nanostructured nickel phthalocyanine (NiPc/C) for oxygen reduction reaction in alkaline media. Journal of Applied Electrochemistry, 2013, 43, 43-51.	1.5	33
96	New highly proton-conducting membrane based on sulfonated poly(arylene ether sulfone)s containing fluorophenyl pendant groups, for low-temperature polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 2014, 39, 2639-2648.	3.8	33
97	Selective formation of C2 products from the electrochemical conversion of CO2 on CuO-derived copper electrodes comprised of nanoporous ribbon arrays. Catalysis Today, 2017, 288, 18-23.	2.2	33
98	Achieving high-powered Zn/air fuel cell through N and S co-doped hierarchically porous carbons with tunable active-sites as oxygen electrocatalysts. Journal of Power Sources, 2017, 365, 348-353.	4.0	33
99	A novel composite (FMC) to serve as a durable 3D-clam-shaped bifunctional cathode catalyst for both primary and rechargeable zinc-air batteries. Science Bulletin, 2017, 62, 1216-1226.	4.3	33
100	Rational fabrication of thin-layered NiCo2S4 loaded graphene as bifunctional non-oxide catalyst for rechargeable zinc-air batteries. Electrochimica Acta, 2020, 342, 136108.	2.6	33
101	Novel proton-conducting polymer electrolyte membranes based on PVA/PAMPS/PEG400 blend. Journal of Power Sources, 2006, 156, 311-314.	4.0	32
102	Metalâ€Organicâ€Frameworkâ€Derived Co Nanoparticles Deposited on Nâ€Doped Bimodal Mesoporous Carbon Nanorods as Efficient Bifunctional Catalysts for Rechargeable Zincâ°'Air Batteries. ChemElectroChem, 2018, 5, 1868-1873.	1.7	32
103	Bimetallic Sulfide with Controllable Mg Substitution Anchored on CNTs as Hierarchical Bifunctional Catalyst toward Oxygen Catalytic Reactions for Rechargeable Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2020, 12, 37164-37172.	4.0	32
104	In-situ growth of CoNi bimetal anchored on carbon nanoparticle/nanotube hybrid for boosting rechargeable Zn-air battery. Journal of Energy Chemistry, 2022, 66, 348-355.	7.1	32
105	Ultrafine porous carbon fiber and its supported platinum catalyst for enhancing performance of proton exchange membrane fuel cells. Electrochimica Acta, 2015, 177, 174-180.	2.6	31
106	Design and engineering of urchin-like nanostructured SnO2 catalysts via controlled facial hydrothermal synthesis for efficient electro-reduction of CO2. Electrochimica Acta, 2017, 248, 123-132.	2.6	31
107	Poly(vinyl alcohol)/Poly(diallyldimethylammonium chloride) anion-exchange membrane modified with multiwalled carbon nanotubes for alkaline fuel cells. Journal of Materiomics, 2019, 5, 286-295.	2.8	30
108	Poly(ethylene glycol) plasticized poly(vinyl alcohol)/poly(acrylamide-co-diallyldimethylammonium) Tj ETQq0 0 0 rg	gBT /Over 2.1	lock 10 Tf 50 28

108

7

2013, 167, 43-50.

#	Article	IF	CITATIONS
109	Hierarchical Porous Carbon Derived from Coal Tar Pitch Containing Discrete Co–Nx–C Active Sites for Efficient Oxygen Electrocatalysis and Rechargeable Zn–Air Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 8587-8596.	3.2	28
110	Continuous electroreduction of carbon dioxide to formate on Tin nanoelectrode using alkaline membrane cell configuration in aqueous medium. Catalysis Today, 2018, 318, 32-38.	2.2	27
111	Exploiting a High-Performance "Double-Carbon―Structure Co9S8/GN Bifunctional Catalysts for Rechargeable Zn–Air Batteries. ACS Applied Materials & Interfaces, 2020, 12, 38202-38210.	4.0	26
112	Electro-conversion of methane to alcohols on "capsule-like―binary metal oxide catalysts. Applied Catalysis B: Environmental, 2021, 282, 119572.	10.8	26
113	Metal chalcogenide-associated catalysts enabling CO ₂ electroreduction to produce low-carbon fuels for energy storage and emission reduction: catalyst structure, morphology, performance, and mechanism. Journal of Materials Chemistry A, 2021, 9, 2526-2559.	5.2	26
114	Carbon-supported co-pyridine as non-platinum cathode catalyst for alkaline membrane fuel cells. Electrochimica Acta, 2013, 96, 298-305.	2.6	25
115	Novel composite Nafion membranes modified with copper phthalocyanine tetrasulfonic acid tetrasodium salt for fuel cell application. Journal of Materiomics, 2019, 5, 252-257.	2.8	25
116	In-situ growth of CuO/Cu nanocomposite electrode for efficient CO2 electroreduction to CO with bacterial cellulose as support. Journal of CO2 Utilization, 2020, 37, 188-194.	3.3	25
117	A facile one-step preparation of a Pd–Co bimetallic hollow nanosphere electrocatalyst for ethanol oxidation. Catalysis Science and Technology, 2013, 3, 2843.	2.1	24
118	Imidazolium-Functionalized Anion Exchange Polymer Electrolytes with High Tensile Strength and Stability for Alkaline Membrane Fuel Cells. Electrochimica Acta, 2015, 177, 201-208.	2.6	24
119	Dual-active-sites design of CoSx anchored on nitrogen-doped carbon with tunable mesopore enables efficient Bi-Functional oxygen catalysis for ultra-stable zinc-air batteries. Journal of Power Sources, 2019, 438, 226953.	4.0	24
120	Effect of metal particle size and Nafion content on performance of MEA using Ir-V/C as anode catalyst. International Journal of Hydrogen Energy, 2010, 35, 5528-5538.	3.8	23
121	Proton conductance and spectroscopic characteristics of acid-doped polymer gels based on poly(ethylene oxide)-modified polymethacrylate. Solid State Ionics, 2003, 156, 415-424.	1.3	22
122	Carbon-supported Ir–V nanoparticle as novel platinum-free anodic catalysts in proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 2009, 34, 5144-5151.	3.8	21
123	A Proton Conductor Based on a Polymeric Complex of Poly(Ethylene Oxide)-Modified Poly(Methacrylate) with Anhydrous H3PO4. Chemistry of Materials, 2003, 15, 2005-2010.	3.2	20
124	Highly Stabilized Zincâ€Air Batteries Based on Nanostructured Co ₃ O ₄ Composites as Efficient Bifunctional Electrocatalyst. ChemElectroChem, 2018, 5, 1976-1984.	1.7	20
125	Highly Efficient Porous Carbon Electrocatalyst with Controllable Nâ€Species Content for Selective CO 2 Reduction. Angewandte Chemie, 2020, 132, 3270-3277.	1.6	20
126	Transition metal-tetracyanoquinodimethane monolayers as single-atom catalysts for the electrocatalytic nitrogen reduction reaction. Materials Advances, 2020, 1, 1285-1292.	2.6	20

#	Article	IF	CITATIONS
127	Hierarchical bifunctional catalysts with tailored catalytic activity for high-energy rechargeable Zn-air batteries. Applied Energy, 2020, 279, 115876.	5.1	20
128	Highly Durable, Proton-Conducting Semi-interpenetrating Polymer Networks from PVA/PAMPS Composites by Incorporating Plasticizer Variants. Electrochemical and Solid-State Letters, 2006, 9, A379.	2.2	19
129	Synthesis of a highly active carbon-supported Ir–V/C catalyst for the hydrogen oxidation reaction in PEMFC. Electrochimica Acta, 2009, 54, 5614-5620.	2.6	19
130	Promoter Effects of Functional Groups of Hydroxide-Conductive Membranes on Advanced CO ₂ Electroreduction to Formate. ACS Applied Materials & Interfaces, 2019, 11, 6881-6889.	4.0	19
131	Nitrogen and sulfur co-doped mesoporous carbon as cathode catalyst for H2/O2 alkaline membrane fuel cell – effect of catalyst/bonding layer loading. International Journal of Hydrogen Energy, 2016, 41, 9159-9166.	3.8	17
132	Investigation of polyacrylamide based hydroxide ion-conducting electrolyte and its application in all-solid electrochemical capacitors. Sustainable Energy and Fuels, 2017, 1, 1580-1587.	2.5	16
133	Insert Zn ²⁺ in Tetrahedral Sites of Bi-metal Zn-Co Spinel Oxides with High Oxygen Catalytic Performance for Liquid and Flexible Zinc-Air Batteries. Journal of the Electrochemical Society, 2020, 167, 050512.	1.3	16
134	Ultrafine Mo ₂ C nanoparticles embedded in an MOF derived N and P co-doped carbon matrix for an efficient electrocatalytic oxygen reduction reaction in zinc–air batteries. Nanoscale, 2022, 14, 2065-2073.	2.8	16
135	Fabricating hydroxyl anion conducting membranes based on poly(vinyl alcohol) and bis(2-chloroethyl) ether-1,3-bis[3-(dimethylamino)propyl] urea copolymer with linear anion-exchange sites for polymer electrolyte membrane fuel cell. Solid State Ionics, 2017, 308, 112-120.	1.3	15
136	Multi-wall carbon nanotube-supported palladium–cobalt oxide nanoparticle as efficient catalyst for oxygen reduction reaction. Ionics, 2019, 25, 5929-5937.	1.2	15
137	Cu/S-Occupation Bifunctional Oxygen Catalysts for Advanced Rechargeable Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2020, 12, 52836-52844.	4.0	15
138	High PEMFC performance by applying Ir-V nanoparticles as a cathode catalyst. Applied Catalysis B: Environmental, 2009, 91, 198-203.	10.8	14
139	Aqueous-phase electrochemical reduction of CO2 based on SnO2CuO nanocomposites with improved catalytic activity and selectivity. Catalysis Today, 2018, 318, 2-9.	2.2	14
140	Carbon-Supported IrM (M=V, Mn, Fe, Co, and Ni) Binary Alloys as Anode Catalysts for Polymer Electrolyte Fuel Cells. Journal of the Electrochemical Society, 2009, 156, B436.	1.3	13
141	Morphology-controlled construction of hierarchical hollow hybrid SnO2@TiO2 nanocapsules with outstanding lithium storage. Scientific Reports, 2015, 5, 15252.	1.6	13
142	Advantageous Configurative Heteroatoms-Doped Carbon Foams Design and Application for Ultrahigh-Powered Zn–Air Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 731-738.	3.2	13
143	Application of a novel PUB enhanced semiâ€interpenetrating chitosanâ€based anion exchange membrane. International Journal of Energy Research, 2020, 44, 1607-1623.	2.2	12
144	Iron-tetracyanobenzene complex derived non-precious catalyst for oxygen reduction reaction. Electrochimica Acta, 2015, 162, 224-229.	2.6	11

#	Article	IF	CITATIONS
145	High performing all-solid electrochemical capacitor using chitosan/poly(acrylamide-co-diallyldimethylammonium chloride) as anion conducting membranes. Electrochimica Acta, 2018, 276, 319-324.	2.6	11
146	Evaluation of carbon-supported copper phthalocyanine (CuPc/C) as a cathode catalyst for fuel cells using Nafion as an electrolyte. Ionics, 2013, 19, 1415-1422.	1.2	10
147	Effects of additives on palladium nanocrystals supported on multiwalled carbon nanotubes and their electrocatalytic properties toward formic acid oxidation. Ionics, 2014, 20, 259-268.	1.2	10
148	Effect of acid-leaching on carbon-supported copper phthalocyanine tetrasulfonic acid tetrasodium salt (CuTSPc/C) for oxygen reduction reaction in alkaline electrolyte: active site studies. RSC Advances, 2015, 5, 50344-50352.	1.7	10
149	Preparing Desirable Activated Carbons from Agricultural Residues for Potential Uses in Water Treatment. Waste and Biomass Valorization, 2015, 6, 1029-1036.	1.8	10
150	CuBi electrocatalysts modulated to grow on derived copper foam for efficient CO2-to-formate conversion. Journal of Colloid and Interface Science, 2022, 606, 994-1003.	5.0	10
151	IrCo Metal-alloy As a Novel Anode Catalyst for PEFCs. ECS Transactions, 2009, 16, 93-97.	0.3	9
152	Nitrogen and Chlorine Dual-doped Mesoporous Carbon as Efficient Nonprecious Electrocatalyst for Oxygen Reduction Reaction Both in Alkaline and Acidic Electrolytes. Chemistry Letters, 2014, 43, 1484-1486.	0.7	9
153	Imidazolium group prompted alkaline anion-exchange membrane with high performance for efficient electrochemical CO2 conversion. Green Energy and Environment, 2023, 8, 893-903.	4.7	9
154	N,N′-Bis(salicylidene)ethylenediamine as a nitrogen-rich precursor to synthesize electrocatalysts with high methanol-tolerance for polymer electrolyte membrane fuel cell oxygen reduction reaction. Journal of Power Sources, 2014, 260, 349-356.	4.0	8
155	Fabrication of bacterial cellulose membrane-based alkaline-exchange membrane for application in electrochemical reduction of CO2. Separation and Purification Technology, 2021, 272, 118910.	3.9	8
156	Using aminopyrine as a nitrogen-enriched small molecule precursor to synthesize high-performing nitrogen doped mesoporous carbon for catalyzing oxygen reduction reaction. RSC Advances, 2017, 7, 669-677.	1.7	7
157	Bi-functional composite electrocatalysts consisting of nanoscale (La, Ca) oxides and carbon nanotubes for long-term zinc–air fuel cells and rechargeable batteries. Sustainable Energy and Fuels, 2018, 2, 91-95.	2.5	7
158	Anion-regulation engineering toward Cu/In/MOF bimetallic electrocatalysts for selective electrochemical reduction of CO2 to CO/formate. Materials Reports Energy, 2022, 2, 100139.	1.7	6
159	Synergistic electrocatalysis of N,Nʹ-bis(salicylidene)-ethylenediamine-cobalt(II) and conductive carbon black (BP) for high efficient CO2 electroreduction. Journal of Solid State Electrochemistry, 2015, 19, 3355-3363.	1.2	5
160	In-situ assembly of Cu/CuxO composite with CNT/Bacterial cellulose matrix as a support for efficient CO2 electroreduction reaction to CO and C2H4. Separation and Purification Technology, 2022, 280, 119832.	3.9	5
161	Multiâ€walled carbon nanotubes incorporation into crossâ€linked novel alkaline ionâ€exchange membrane for high efficiency allâ€solidâ€state supercapacitors. International Journal of Energy Research, 2020, 44, 4038-4047.	2.2	4
162	Bi-Cu bimetallic electrocatalysts prepared using electrochemical deposition effluent for highly converting CO2 to formate. Chemical Engineering Research and Design, 2022, 158, 560-566.	2.7	4

#	Article	IF	CITATIONS
163	Electrochemical Gas Sensors: Free-Standing Functionalized Graphene Oxide Solid Electrolytes in Electrochemical Gas Sensors (Adv. Funct. Mater. 11/2016). Advanced Functional Materials, 2016, 26, 1670-1670.	7.8	3
164	Palladium/Copper Alloy Hollow Nanocubes Supported on Sulfurâ€doped Graphene as Highly Efficient Catalyst for Ethylene Glycol Oxidation. ChemistrySelect, 2019, 4, 9716-9721.	0.7	2
165	Doubleâ€Atom Catalysts: "More is Different:―Synergistic Effect and Structural Engineering in Doubleâ€Atom Catalysts (Adv. Funct. Mater. 3/2021). Advanced Functional Materials, 2021, 31, 2170015.	7.8	2
166	Electrooxidation of Hydrogen on Ni-Organic Metal Complex Catalysts in Acidic Media for PEMFCs. Journal of Nanomaterials, 2011, 2011, 1-9.	1.5	1
167	Introduction to CO2 Electroreduction. Electrochemical Energy Storage and Conversion, 2016, , 1-46.	0.0	1
168	Highly Stabilized Zinc-Air Batteries Based on Nanostructured Co3 O4 Composites as an Efficient Bifunctional Electrocatalyst. ChemElectroChem, 2018, 5, 1742-1742.	1.7	1
169	Back Cover Image, Volume 3, Number 1, March 2021. , 2021, 3, ii.		0
170	SOLID ALKALINE ELECTROLYTE MEMBRANES BASED ON POLY(VINYL ALCOHOL) FOR POTENTIAL USE IN FUEL CELLS. Acta Polymerica Sinica, 2011, 011, 701-708.	0.0	0
171	Aliphatic Polymer Electrolyte Membranes. Electrochemical Energy Storage and Conversion, 2015, , 449-493.	0.0	Ο
172	Co/Ni dual-metal embedded in heteroatom doped porous carbon core-shell bifunctional electrocatalyst for rechargeable Zn-air batteries. Materials Reports Energy, 2022, 2, 100090.	1.7	0