Michael Fricker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6504777/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An altered sputum macrophage transcriptome contributes to the neutrophilic asthma endotype. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1204-1215.	2.7	14
2	T2-low: what do we know?. Annals of Allergy, Asthma and Immunology, 2022, 129, 150-159.	0.5	11
3	Adverse roles of mast cell chymase-1 in COPD. European Respiratory Journal, 2022, 60, 2101431.	3.1	17
4	Neutrophilic asthma features increased airway classical monocytes. Clinical and Experimental Allergy, 2021, 51, 305-317.	1.4	19
5	Hemopexin: A Novel Anti-inflammatory Marker for Distinguishing COPD From Asthma. Allergy, Asthma and Immunology Research, 2021, 13, 450.	1.1	7
6	Sputum TNF markers are increased in neutrophilic and severe asthma and are reduced by azithromycin treatment. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2090-2101.	2.7	27
7	Molecular markers of type 2 airway inflammation are similar between eosinophilic severe asthma and eosinophilic chronic obstructive pulmonary disease. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2079-2089.	2.7	10
8	Airway monocyte modulation relates to tumour necrosis factor dysregulation in neutrophilic asthma. ERJ Open Research, 2021, 7, 00131-2021.	1.1	7
9	Timeâ€resolved proteomic profiling of cigarette smokeâ€induced experimental chronic obstructive pulmonary disease. Respirology, 2021, 26, 960-973.	1.3	22
10	Sputum Gene Expression Reveals Dysregulation of Mast Cells and Basophils in Eosinophilic COPD. International Journal of COPD, 2021, Volume 16, 2165-2179.	0.9	7
11	Sputum mast cell/basophil gene expression relates to inflammatory and clinical features of severe asthma. Journal of Allergy and Clinical Immunology, 2021, 148, 428-438.	1.5	33
12	Necroptosis Signaling Promotes Inflammation, Airway Remodeling, and Emphysema in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 667-681.	2.5	85
13	Sputum transcriptomics implicates increased p38 signalling activity in severe asthma. Respirology, 2020, 25, 709-718.	1.3	20
14	<p>A Sputum 6 Gene Expression Signature Predicts Inflammatory Phenotypes and Future Exacerbations of COPD</p> . International Journal of COPD, 2020, Volume 15, 1577-1590.	0.9	10
15	Relationship of sputum mast cells with clinical and inflammatory characteristics of asthma. Clinical and Experimental Allergy, 2020, 50, 696-707.	1.4	16
16	Sputum mast cells associate with clinical and inflammatory features of asthma. , 2020, , .		0
17	Neutrophilic asthma features increased airway classical monocytes. , 2020, , .		0
18	Dysregulation of sputum columnar epithelial cells and products in distinct asthma phenotypes. Clinical and Experimental Allergy, 2019, 49, 1418-1428.	1.4	11

MICHAEL FRICKER

#	Article	IF	CITATIONS
19	Platelet activating factor receptor regulates colitis-induced pulmonary inflammation through the NLRP3 inflammasome. Mucosal Immunology, 2019, 12, 862-873.	2.7	43
20	A sputum 6-gene signature predicts future exacerbations of poorly controlled asthma. Journal of Allergy and Clinical Immunology, 2019, 144, 51-60.e11.	1.5	50
21	Differential Tumor Necrosis Factor Ligand and Receptor Expression on Monocyte Subsets in Blood and Sputum. , 2019, , .		0
22	<p>Blood Neutrophils In COPD But Not Asthma Exhibit A Primed Phenotype With Downregulated CD62L Expression</p> . International Journal of COPD, 2019, Volume 14, 2517-2525.	0.9	7
23	Galectin-3 enhances monocyte-derived macrophage efferocytosis of apoptotic granulocytes in asthma. Respiratory Research, 2019, 20, 1.	1.4	104
24	Fibulin-1c regulates transforming growth factor–β activation in pulmonary tissue fibrosis. JCI Insight, 2019, 4, .	2.3	42
25	Role ofÂnecroptosisÂin the pathogenesis of COPD , 2019, , .		0
26	Circulatory neutrophils in COPD feature downregulated CD62L expression in comparison with asthma and healthy participants. , 2019, , .		0
27	LSC - 2019 - Role of necroptosis in the pathogenesis of COPD. , 2019, , .		0
28	Dysregulation of sputum columnar epithelial cells and products in distinct asthma phenotypes. , 2019, , .		0
29	Toll-like receptor 2 and 4 have Opposing Roles in the Pathogenesis of Cigarette Smoke-induced Chronic Obstructive Pulmonary Disease. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, ajplung.00154.2.	1.3	37
30	IL-6 Drives Neutrophil-Mediated Pulmonary Inflammation Associated with Bacteremia in Murine Models of Colitis. American Journal of Pathology, 2018, 188, 1625-1639.	1.9	46
31	Neuronal Cell Death. Physiological Reviews, 2018, 98, 813-880.	13.1	737
32	Chronic cigarette smoke exposure induces systemic hypoxia that drives intestinal dysfunction. JCI Insight, 2018, 3, .	2.3	103
33	Can biomarkers help us hit targets in difficultâ€ŧoâ€ŧreat asthma?. Respirology, 2017, 22, 430-442.	1.3	36
34	Macrophage dysfunction in the pathogenesis and treatment of asthma. European Respiratory Journal, 2017, 50, 1700196.	3.1	106
35	Flow cytometry-based profiling of immune cells in asthmatic sputum. , 2017, , .		0
36	Amyloid β induces microglia to phagocytose neurons via activation of protein kinase Cs and NADPH oxidase. International Journal of Biochemistry and Cell Biology, 2016, 81, 346-355.	1.2	25

MICHAEL FRICKER

#	Article	IF	CITATIONS
37	Fibulin-1 regulates the pathogenesis of tissue remodeling in respiratory diseases. JCI Insight, 2016, 1, .	2.3	100
38	Synaptic NMDA receptor activity is coupled to the transcriptional control of the glutathione system. Nature Communications, 2015, 6, 6761.	5.8	119
39	Phagoptosis - Cell Death By Phagocytosis - Plays Central Roles in Physiology, Host Defense and Pathology. Current Molecular Medicine, 2015, 15, 842-851.	0.6	47
40	Importance of Mast Cell Prss31/Transmembrane Tryptase/Tryptase-Î ³ in Lung Function and Experimental Chronic Obstructive Pulmonary Disease and Colitis. Journal of Biological Chemistry, 2014, 289, 18214-18227.	1.6	78
41	Tu1732 Colon Pathology in a Mouse Model of Cigarette Smoke Induced Chronic Obstructive Pulmonary Disease (COPD) -A Model for Induction of Crohn's Disease?. Gastroenterology, 2014, 146, S-828-S-829.	0.6	0
42	Animal models of chronic obstructive pulmonary disease. Expert Opinion on Drug Discovery, 2014, 9, 629-645.	2.5	130
43	Phagocytosis executes delayed neuronal death after focal brain ischemia. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4098-107.	3.3	288
44	Caspase Inhibitors Protect Neurons by Enabling Selective Necroptosis of Inflamed Microglia. Journal of Biological Chemistry, 2013, 288, 9145-9152.	1.6	81
45	MFG-E8 Mediates Primary Phagocytosis of Viable Neurons during Neuroinflammation. Journal of Neuroscience, 2012, 32, 2657-2666.	1.7	189
46	Primary phagocytosis of viable neurons by microglia activated with LPS or AÎ ² is dependent on calreticulin/LRP phagocytic signalling. Journal of Neuroinflammation, 2012, 9, 196.	3.1	116
47	Necrosis, Apoptosis, and Autophagy: Mechanisms of Neuronal and Glial Cell Death. Neuromethods, 2011, , 305-330.	0.2	5
48	Implication of TAp73 in the p53â€independent pathway of Puma induction and Pumaâ€dependent apoptosis in primary cortical neurons. Journal of Neurochemistry, 2010, 114, 772-783.	2.1	18
49	Suppression of the Intrinsic Apoptosis Pathway by Synaptic Activity. Journal of Neuroscience, 2010, 30, 2623-2635.	1.7	127
50	Phosphorylation of Puma modulates its apoptotic function by regulating protein stability. Cell Death and Disease, 2010, 1, e59-e59.	2.7	55
51	Hypoxia-selective macroautophagy and cell survival signaled by autocrine PDGFR activity. Genes and Development, 2009, 23, 1283-1288.	2.7	58
52	Mutually Exclusive Subsets of BH3-Only Proteins Are Activated by the p53 and c-Jun N-Terminal Kinase/c-Jun Signaling Pathways during Cortical Neuron Apoptosis Induced by Arsenite. Molecular and Cellular Biology, 2005, 25, 8732-8747.	1.1	74
53	Substituting c-Jun N-terminal kinase-3 (JNK3) ATP-binding site amino acid residues with their p38 counterparts affects binding of JNK- and p38-selective inhibitors. Archives of Biochemistry and Biophysics, 2005, 438, 195-205.	1.4	11
54	In Vitro Characterization of the Presenilin-Dependent Î ³ -Secretase Complex Using a Novel Affinity Ligand. Biochemistry, 2003, 42, 8133-8142.	1.2	79