LiLiang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6504596/publications.pdf Version: 2024-02-01

LILIANC WANC

#	Article	IF	CITATIONS
1	Experimental and modelling studies of the transient tribological behaviour of a two-phase lubricant under complex loading conditions. Friction, 2022, 10, 911-926.	6.4	5
2	Analysing the Interaction between Microscopic Deformation, Microstructure and Void Evolution of Near-α Titanium Alloys during Non-Superplastic Hot Deformation by an Integrated Crystal Plasticity Finite Element Model. Materials, 2022, 15, 294.	2.9	0
3	Development of a Formability Prediction Model for Aluminium Sandwich Panels with Polymer Core. Materials, 2022, 15, 4140.	2.9	2
4	Design for additive manufacturing (DfAM) of hot stamping dies with improved cooling performance under cyclic loading conditions. Additive Manufacturing, 2021, 37, 101720.	3.0	4
5	Investigation of the friction coefficient evolution and lubricant breakdown behaviour of AA7075 aluminium alloy forming processes at elevated temperatures. International Journal of Extreme Manufacturing, 2021, 3, 025002.	12.7	18
6	Dodecanethiol coated multi-walled carbon nanotube films as flexible current collector for lithium-ion batteries. Materials Letters, 2021, 291, 129508.	2.6	3
7	Experimental and modelling study of friction evolution and lubricant breakdown behaviour under varying contact conditions in warm aluminium forming processes. Tribology International, 2021, 158, 106934.	5.9	14
8	An experimental investigation on the ductility and post-form strength of a martensitic steel in a novel warm stamping process. Journal of Materials Processing Technology, 2020, 275, 116387.	6.3	14
9	Fundamentals, processes and equipment for hot medium pressure forming of light material tubular components. International Journal of Lightweight Materials and Manufacture, 2020, 3, 1-19.	2.1	11
10	A novel test method for continuous nonlinear biaxial tensile deformation of sheet metals by bulging with stepped-dies. International Journal of Mechanical Sciences, 2020, 169, 105321.	6.7	6
11	A general IHTC model for hot/warm aluminium stamping. Applied Thermal Engineering, 2020, 181, 115619.	6.0	2
12	Review on additive manufacturing of tooling for hot stamping. International Journal of Advanced Manufacturing Technology, 2020, 109, 87-107.	3.0	37
13	Enhanced formability and forming efficiency for two-phase titanium alloys by Fast light Alloys Stamping Technology (FAST). Materials and Design, 2020, 194, 108948.	7.0	26
14	The study of central cracking mechanism and criterion in cross wedge rolling. International Journal of Machine Tools and Manufacture, 2020, 159, 103647.	13.4	16
15	Influence of silicon carbide and porcelain on tribological performance of Al6061 based hybrid composites. Tribology International, 2020, 151, 106514.	5.9	33
16	Characterisation of the interfacial heat transfer coefficient in hot stamping of titanium alloys. International Communications in Heat and Mass Transfer, 2020, 113, 104535.	5.6	18
17	Characterization of Thermomechanical Boundary Conditions of a Martensitic Steel for a FAST Forming Process. Journal of Manufacturing and Materials Processing, 2020, 4, 57.	2.2	4
18	High-efficiency forming processes for complex thin-walled titanium alloys components: state-of-the-art and perspectives. International Journal of Extreme Manufacturing, 2020, 2, 032001.	12.7	31

#	Article	IF	CITATIONS
19	Development of an interfacial heat transfer coefficient model for the hot and warm aluminium stamping processes under different initial blank temperature conditions. Journal of Materials Processing Technology, 2019, 273, 116245.	6.3	9
20	Development of the post-form strength prediction model for a high-strength 6xxx aluminium alloy with pre-existing precipitates and residual dislocations. International Journal of Plasticity, 2019, 119, 230-248.	8.8	36
21	Effect of tool coatings on the interfacial heat transfer coefficient in hot stamping of aluminium alloys under variable contact pressure conditions. International Journal of Heat and Mass Transfer, 2019, 137, 74-83.	4.8	13
22	Coating effects on the galling behaviour of aluminium metal forming processes. IOP Conference Series: Materials Science and Engineering, 2019, 651, 012022.	0.6	3
23	Development of an interactive friction model to predict aluminum transfer in a pin-on-disc sliding system. Tribology International, 2019, 130, 216-228.	5.9	18
24	Multi-objective finite element simulations of a sheet metal-forming process via a cloud-based platform. International Journal of Advanced Manufacturing Technology, 2019, 100, 2753-2765.	3.0	19
25	Hot Stamping of Complex-Shaped High-Strength Aluminum Components. , 2019, , .		0
26	Transition of failure mode in hot stamping of AA6082 tailor welded blanks. Journal of Materials Processing Technology, 2018, 257, 33-44.	6.3	18
27	Analysis and modelling of a novel process for extruding curved metal alloy profiles. International Journal of Mechanical Sciences, 2018, 138-139, 524-536.	6.7	38
28	A review on forming techniques for manufacturing lightweight complex—shaped aluminium panel components. International Journal of Lightweight Materials and Manufacture, 2018, 1, 55-80.	2.1	137
29	Formability and microstructure evolution mechanisms of Ti6Al4V alloy during a novel hot stamping process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 719, 72-81.	5.6	38
30	Effects of lubricant on the IHTC during the hot stamping of AA6082 aluminium alloy: Experimental and modelling studies. Journal of Materials Processing Technology, 2018, 255, 175-183.	6.3	16
31	Effect of porosities on tensile properties of laser-welded Al-Li alloy: an experimental and modelling study. International Journal of Advanced Manufacturing Technology, 2018, 95, 659-671.	3.0	25
32	Feasibility studies of a novel extrusion process for curved profiles: Experimentation and modelling. International Journal of Machine Tools and Manufacture, 2018, 126, 27-43.	13.4	52
33	Investigation and Constitutive Modelling of High Strength 6xxx Series Aluminium Alloy: Precipitation Hardening Responses to FAST (Fast Light Alloys Stamping Technology) and Artificial Ageing. Materials Science Forum, 2018, 941, 814-820.	0.3	2
34	Feasibility study of a novel hot stamping process for Ti6Al4V alloy. MATEC Web of Conferences, 2018, 190, 08001.	0.2	1
35	Coupled thermal-electrical finite element analysis of electrical resistance heating in hot stamping of ultra-high strength steel tubes. Procedia Manufacturing, 2018, 15, 1047-1054.	1.9	6
36	Effect of tool coating on interfacial heat transfer coefficient in hot stamping of AA7075 aluminium alloys. Procedia Manufacturing, 2018, 15, 1127-1133.	1.9	2

#	Article	IF	CITATIONS
37	Characterisation of the contact pressure dependent interfacial heat transfer coefficient for a hot stamping process following a data driven approach. MATEC Web of Conferences, 2018, 190, 08005.	0.2	0
38	Experimental and modelling study of an approach to enhance gas bulging formability of TA15 titanium alloy tube based on dynamic recrystallization. Journal of Materials Processing Technology, 2018, 259, 387-396.	6.3	21
39	Experimental and numerical investigation of the influence of pulsating pressure on hot tube gas forming using oscillating heating. International Journal of Advanced Manufacturing Technology, 2018, 97, 3839-3848.	3.0	16
40	Determination of the interfacial heat transfer coefficient for a hot aluminium stamping process. Journal of Materials Processing Technology, 2017, 247, 158-170.	6.3	47
41	Effect of recrystallization on hot deformation mechanism of TA15 titanium alloy under uniaxial tension and biaxial gas bulging conditions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 708, 149-158.	5.6	18
42	Correlation between softening mechanisms and deformation non-uniformity of laser-welded titanium alloy tube during gas bulging process. Materials Characterization, 2017, 133, 196-205.	4.4	5
43	Hot stamping of AA6082 tailor welded blanks: Experiments and knowledge-based cloud – finite element (KBC-FE) simulation. Journal of Materials Processing Technology, 2017, 250, 228-238.	6.3	18
44	Forming limit prediction for hot stamping processes featuring non-isothermal and complex loading conditions. International Journal of Mechanical Sciences, 2017, 131-132, 792-810.	6.7	29
45	Prediction of earing in TWIP steel sheets based on coupled twinning crystal plasticity model. International Journal of Advanced Manufacturing Technology, 2017, 89, 3037-3047.	3.0	11
46	Springback analysis of AA5754 after hot stamping: experiments and FE modelling. International Journal of Advanced Manufacturing Technology, 2017, 89, 1339-1352.	3.0	49
47	Development of an interactive friction model for the prediction of lubricant breakdown behaviour during sliding wear. Tribology International, 2017, 110, 370-377.	5.9	30
48	Determination of the interfacial heat transfer coefficient between AA7075 and different forming tools in hot stamping processes. Procedia Engineering, 2017, 207, 717-722.	1.2	2
49	Hot stamping of AA6082 tailor welded blanks for automotive applications. Procedia Engineering, 2017, 207, 729-734.	1.2	7
50	A new design of friction test rig and determination of friction coefficient when warm forming an aluminium alloy. Procedia Engineering, 2017, 207, 2274-2279.	1.2	10
51	A novel application of sideways extrusion to produce curved aluminium profiles: Feasibility study. Procedia Engineering, 2017, 207, 2304-2309.	1.2	22
52	Hot stamping of AA6082 tailor welded blanks: experiment and FE simulation. Manufacturing Review, 2016, 3, 8.	1.5	9
53	Knowledge Based Cloud FE simulation - data-driven material characterization guidelines for the hot stamping of aluminium alloys. Journal of Physics: Conference Series, 2016, 734, 032042.	0.4	5
54	Characterization of the interfacial heat transfer coefficient for hot stamping processes. Journal of Physics: Conference Series, 2016, 734, 032079.	0.4	1

#	Article	IF	CITATIONS
55	Determination of the Interfacial Heat Transfer Coefficient in the Hot Stamping of AA7075. Manufacturing Review, 2016, 3, 16.	1.5	4
56	Hot stamping of an Al-Li alloy: a feasibility study. Manufacturing Review, 2016, 3, 9.	1.5	10
57	Knowledge Based Cloud FE Simulation of Sheet Metal Forming Processes. Journal of Visualized Experiments, 2016, , .	0.3	6
58	An investigation of a new 2D CDM model in predicting failure in HFQing of an automotive panel. MATEC Web of Conferences, 2015, 21, 05011.	0.2	5
59	HFQ forming of AA6082 tailor welded blanks. MATEC Web of Conferences, 2015, 21, 05006.	0.2	3
60	Hot stamping of an Al-Li alloy: A feasibility study. MATEC Web of Conferences, 2015, 21, 05007.	0.2	7
61	Determination of the interfacial heat transfer coefficient in the hot stamping of AA7075. MATEC Web of Conferences, 2015, 21, 05003.	0.2	7
62	Investigation on creep age forming of AA2219 stiffenedÂstructures. MATEC Web of Conferences, 2015, 21, 04010.	0.2	2
63	Tool-life prediction under multi-cycle loading during metal forming: a feasibility study. Manufacturing Review, 2015, 2, 28.	1.5	4
64	Determination of a Set of Constitutive Equations for an Al-Li Alloy at SPF Conditions. Materials Today: Proceedings, 2015, 2, S408-S413.	1.8	5
65	Determination of Heat Transfer Coefficient for Hot Stamping Process. Materials Today: Proceedings, 2015, 2, S434-S439.	1.8	19
66	The friction coefficient evolution of a TiN coated contact during sliding wear. Applied Surface Science, 2015, 345, 109-115.	6.1	78
67	Size-dependent mechanical properties in AA6082 tailor welded specimens. Journal of Materials Processing Technology, 2015, 224, 169-180.	6.3	18
68	Effect of melt conditioning on heat treatment and mechanical properties of AZ31 alloy strips produced by twin roll casting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 620, 223-232.	5.6	18
69	Tool life prediction under multi-cycle loading conditions: A feasibility study. MATEC Web of Conferences, 2015, 21, 12007.	0.2	0
70	Predicting Effect of Temperature, Strain Rate and Strain Path Changes on Forming Limit of Lightweight Sheet Metal Alloys. Procedia Engineering, 2014, 81, 736-741.	1.2	17
71	Numerical study of the solution heat treatment, forming, and in-die quenching (HFQ) process on AA5754. International Journal of Machine Tools and Manufacture, 2014, 87, 39-48.	13.4	155
72	Life cycle assessment of the potential environmental benefits of a novel hot forming process in automotive manufacturing. Journal of Cleaner Production, 2014, 83, 80-86.	9.3	46

#	Article	IF	CITATIONS
73	Determination of hot deformation behavior and processing maps of IN 028 alloy using isothermal hot compression test. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 595, 92-98.	5.6	40
74	Melt Conditioned Twin Roll Casting (MC-TRC) of Thin Mg-Alloy Strips for Direct Stamping of Mg Components. Materials Science Forum, 2013, 765, 170-174.	0.3	6
75	Numerical Investigation on the Hot Forming and Cold-Die Quenching of an Aluminium-Magnesium Alloy into a Complex Component. Materials Science Forum, 2013, 765, 368-372.	0.3	5
76	Friction in aluminium extrusion—Part 1: A review of friction testing techniques for aluminium extrusion. Tribology International, 2012, 56, 89-98.	5.9	50
77	Friction in aluminium extrusion—part 2: A review of friction models for aluminium extrusion. Tribology International, 2012, 56, 99-106.	5.9	26
78	Identification of a friction model for the bearing channel of hot aluminium extrusion dies by using ball-on-disc tests. Tribology International, 2012, 50, 66-75.	5.9	20
79	Formability and failure mechanisms of AA2024 under hot forming conditions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 2648-2656.	5.6	133
80	The isothermal forming process of V-shaped aluminum alloy joint forgings. Jom, 2011, 63, 62-65.	1.9	20
81	Effect of temperature on the frictional behaviour of an aluminium alloy sliding against steel during ball-on-disc tests. Tribology International, 2010, 43, 299-306.	5.9	47
82	Modeling of double action extrusion—A novel extrusion process for friction characterization at the billet–die bearing interface. Tribology International, 2010, 43, 2084-2091.	5.9	11
83	Hybrid forming processes for production of lightweight high strength automotive panel parts. International Heat Treatment and Surface Engineering, 2010, 4, 160-165.	0.2	6
84	Characteristics of the Friction Between Aluminium and Steel at Elevated Temperatures During Ball-on-Disc Tests. Tribology Letters, 2009, 36, 183-190.	2.6	26
85	Evaluation of Plastic Deformation During Metal Forming by Using Lode Parameter. Journal of Materials Engineering and Performance, 2009, 18, 1151-1156.	2.5	5
86	Modelling of plowing and shear friction coefficients during high-temperature ball-on-disc tests. Tribology International, 2009, 42, 15-22.	5.9	18
87	Compressive formability of 7075 aluminum alloy rings under hydrostatic pressure. Transactions of Nonferrous Metals Society of China, 2006, 16, 1103-1109.	4.2	9
88	Friction in Double Action Extrusion. Key Engineering Materials, 0, 424, 153-160.	0.4	6
89	Studies on the Hot Forming and Cold-Die Quenching of AA6082 Tailor Welded Blanks. Key Engineering Materials, 0, 716, 941-947.	0.4	1
90	Formability of AA6082-T6 at Warm and Hot Stamping Conditions. Key Engineering Materials, 0, 716, 107-113.	0.4	7

#	Article	IF	CITATIONS
91	Determination of Processing Windows for the Hot Stamping of AA7075. Key Engineering Materials, 0, 716, 402-412.	0.4	6
92	Investigating the quench sensitivity of high strength AA6082 aluminium alloy during the new FAST forming process. IOP Conference Series: Materials Science and Engineering, 0, 418, 012028.	0.6	4
93	The Galling Behavior of Advanced Coating Contacts with Aluminium Alloy during Sliding Wear. Key Engineering Materials, 0, 767, 117-123.	0.4	5