
Xu-wei Long

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6504575/publications.pdf Version: 2024-02-01

XU-WELLONC

#	Article	IF	CITATIONS
1	Application of rhamnolipid as a novel biodemulsifier for destabilizing waste crude oil. Bioresource Technology, 2013, 131, 1-5.	4.8	94
2	Biosurfactant surfactin with pH-regulated emulsification activity for efficient oil separation when used as emulsifier. Bioresource Technology, 2017, 241, 200-206.	4.8	86
3	Recent progress towards industrial rhamnolipids fermentation: Process optimization and foam control. Bioresource Technology, 2020, 298, 122394.	4.8	79
4	Multi-functional magnetic water purifier for disinfection and removal of dyes and metal ions with superior reusability. Journal of Hazardous Materials, 2018, 347, 160-167.	6.5	52
5	Application of biosurfactant surfactin as a pH-switchable biodemulsifier for efficient oil recovery from waste crude oil. Chemosphere, 2020, 240, 124946.	4.2	46
6	Rhamnolipids elicit the same cytotoxic sensitivity between cancer cell and normal cell by reducing surface tension of culture medium. Applied Microbiology and Biotechnology, 2014, 98, 10187-10196.	1.7	39
7	Foliar penetration enhanced by biosurfactant rhamnolipid. Colloids and Surfaces B: Biointerfaces, 2016, 145, 548-554.	2.5	38
8	Toward high-efficiency production of biosurfactant rhamnolipids using sequential fed-batch fermentation based on a fill-and-draw strategy. Colloids and Surfaces B: Biointerfaces, 2017, 157, 317-324.	2.5	38
9	Dewatering of floated oily sludge by treatment with rhamnolipid. Water Research, 2013, 47, 4303-4311.	5.3	33
10	A submerged membrane bioreactor with pendulum type oscillation (PTO) for oily wastewater treatment: Membrane permeability and fouling control. Bioresource Technology, 2015, 183, 33-41.	4.8	33
11	Rhamnolipids enhance epithelial permeability in Caco-2 monolayers. International Journal of Pharmaceutics, 2013, 446, 130-135.	2.6	31
12	Mechanism Study on the Severe Foaming of Rhamnolipid in Fermentation. Journal of Surfactants and Detergents, 2016, 19, 833-840.	1.0	30
13	Application of biosurfactant rhamnolipid for cleaning of UF membranes. Journal of Membrane Science, 2014, 457, 113-119.	4.1	28
14	Two-step ultrafiltration of rhamnolipids using PSU-g-PEG membrane. Journal of Membrane Science, 2012, 409-410, 105-112.	4.1	27
15	Isolation and purification of biosurfactant mannosylerythritol lipids from fermentation broth with methanol/water/n-hexane. Separation and Purification Technology, 2019, 219, 1-8.	3.9	26
16	Recent progress and trends in the analysis and identification of rhamnolipids. Applied Microbiology and Biotechnology, 2020, 104, 8171-8186.	1.7	23
17	Enhanced rhamnolipids production via efficient foam-control using stop valve as a foam breaker. Bioresource Technology, 2017, 224, 536-543.	4.8	22
18	Efficient purification of sophorolipids via chemical modifications coupled with extractions and their potential applications as antibacterial agents. Separation and Purification Technology, 2020, 245, 116897.	3.9	22

Xu-wei Long

#	Article	IF	CITATIONS
19	The Parkinson's disease–associated mutation N1437H impairs conformational dynamics in the G domain of LRRK2. FASEB Journal, 2019, 33, 4814-4823.	0.2	18
20	Highâ€Performance Production of Biosurfactant Rhamnolipid with Nitrogen Feeding. Journal of Surfactants and Detergents, 2019, 22, 395-402.	1.0	17
21	Biotreatment of oily wastewater by rhamnolipids in aerated active sludge system. Journal of Zhejiang University: Science B, 2009, 10, 852-859.	1.3	14
22	Enhanced surfactin fermentation via advanced repeated fed-batch fermentation with increased cell density stimulated by EDTA–Fe (II). Food and Bioproducts Processing, 2021, 127, 288-294.	1.8	12
23	Efficient Preparation of Sophorolipids and Functionalization with Amino Acids to Furnish Potent Preservatives. Journal of Agricultural and Food Chemistry, 2021, 69, 9608-9615.	2.4	12
24	Extremely high-performance production of rhamnolipids by advanced sequential fed-batch fermentation with high cell density. Journal of Cleaner Production, 2021, 326, 129382.	4.6	12
25	Biomass rhamnolipid modified poly(vinylidene fluoride) membrane with significantly improved surface hydrophilicity and enhanced antifouling performance. Chemical Engineering Science, 2020, 212, 115330.	1.9	11
26	Extraction Separation of Rhamnolipids by n â€Hexane via Forming Reverse Micelles. Journal of Surfactants and Detergents, 2020, 23, 883.	1.0	5
27	Cells with Higher Cortical Membrane Tension Are More Sensitive to Lysis by Biosurfactant Di-rhamnolipids. ACS Biomaterials Science and Engineering, 2020, 6, 352-357.	2.6	4
28	Electrochemiluminescent Ion-Channeling Framework for Membrane Binding and Transmembrane Activity Assays. Analytical Chemistry, 2022, 94, 2154-2162.	3.2	4