
Guangdun Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6504259/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Connecting past and present: single-cell lineage tracing. Protein and Cell, 2022, 13, 790-807.	11.0	30
2	Embryonic vascular establishment requires protein C receptor-expressing endothelial progenitors. Development (Cambridge), 2022, 149, .	2.5	4
3	RNA helicase DDX5 acts as a critical regulator for survival of neonatal mouse gonocytes. Cell Proliferation, 2021, 54, e13000.	5.3	8
4	Base editingâ€mediated perturbation of endogenous PKM1/2 splicing facilitates isoformâ€specific functional analysis in vitro and in vivo. Cell Proliferation, 2021, 54, e13096.	5.3	10
5	AutoGenome: An AutoML tool for genomic research. Artificial Intelligence in the Life Sciences, 2021, 1, 100017.	2.2	4
6	Transcriptional network dynamics during the progression of pluripotency revealed by integrative statistical learning. Nucleic Acids Research, 2020, 48, 1828-1842.	14.5	14
7	Conserved Epigenetic Regulatory Logic Infers Genes Governing Cell Identity. Cell Systems, 2020, 11, 625-639.e13.	6.2	31
8	Using Single-Cell and Spatial Transcriptomes to Understand Stem Cell Lineage Specification During Early Embryo Development. Annual Review of Genomics and Human Genetics, 2020, 21, 163-181.	6.2	31
9	Imbalance of Excitatory/Inhibitory Neuron Differentiation in Neurodevelopmental Disorders with an NR2F1 Point Mutation. Cell Reports, 2020, 31, 107521.	6.4	37
10	C-KIT Expression Distinguishes Fetal from Postnatal Skeletal Progenitors. Stem Cell Reports, 2020, 14, 614-630.	4.8	6
11	Molecular architecture of lineage allocation and tissue organization in early mouse embryo. Nature, 2019, 572, 528-532.	27.8	163
12	A secreted microRNA disrupts autophagy in distinct tissues of Caenorhabditis elegans upon ageing. Nature Communications, 2019, 10, 4827.	12.8	40
13	Comments on â€~Molecular architecture of lineage allocation and tissue organization in early mouse embryo'. Journal of Molecular Cell Biology, 2019, 11, 1024-1025.	3.3	Ο
14	Dissecting primate early post-implantation development using long-term in vitro embryo culture. Science, 2019, 366, .	12.6	137
15	Distinct enhancer signatures in the mouse gastrula delineate progressive cell fate continuum during embryo development. Cell Research, 2019, 29, 911-926.	12.0	16
16	A 3D Atlas of Hematopoietic Stem and Progenitor Cell Expansion by Multi-dimensional RNA-Seq Analysis. Cell Reports, 2019, 27, 1567-1578.e5.	6.4	45
17	Dynamics of Wnt activity on the acquisition of ectoderm potency in epiblast stem cells. Development (Cambridge), 2019, 146, .	2.5	18
18	Single-Cell RNA-Seq Reveals Cellular Heterogeneity of Pluripotency Transition and X Chromosome Dynamics during Early Mouse Development. Cell Reports, 2019, 26, 2593-2607.e3.	6.4	102

Guangdun Peng

#	Article	IF	CITATIONS
19	Lung regeneration by multipotent stem cells residing at the bronchioalveolar-duct junction. Nature Genetics, 2019, 51, 728-738.	21.4	231
20	VGLL4 plays a critical role in heart valve development and homeostasis. PLoS Genetics, 2019, 15, e1007977.	3.5	40
21	Hormones induce the formation of luminal-derived basal cells in the mammary gland. Cell Research, 2019, 29, 206-220.	12.0	14
22	SUN-050 The Evolutionarily Conserved Function of COUP-TF Genes in the Differentiation of Photoreceptor Cells in the Retina. Journal of the Endocrine Society, 2019, 3, .	0.2	0
23	Silencing of developmental genes by H3K27me3 and DNA methylation reflects the discrepant plasticity of embryonic and extraembryonic lineages. Cell Research, 2018, 28, 593-596.	12.0	26
24	Mouse knockout models reveal largely dispensable but context-dependent functions of lncRNAs during development. Journal of Molecular Cell Biology, 2018, 10, 175-178.	3.3	48
25	TGF-β signaling pathway in early mouse development and embryonic stem cells. Acta Biochimica Et Biophysica Sinica, 2018, 50, 68-73.	2.0	27
26	Regulatory network characterization in development: challenges and opportunities. F1000Research, 2018, 7, 1477.	1.6	4
27	Single-Cell Transcriptomic Analysis of Cardiac Differentiation from Human PSCs Reveals HOPX-Dependent Cardiomyocyte Maturation. Cell Stem Cell, 2018, 23, 586-598.e8.	11.1	215
28	Sequential formation and resolution of multiple rosettes drive embryo remodelling after implantation. Nature Cell Biology, 2018, 20, 1278-1289.	10.3	48
29	Mouse gastrulation: Attributes of transcription factor regulatory network for epiblast patterning. Development Growth and Differentiation, 2018, 60, 463-472.	1.5	6
30	Suppressing Nodal Signaling Activity Predisposes Ectodermal Differentiation of Epiblast Stem Cells. Stem Cell Reports, 2018, 11, 43-57.	4.8	16
31	A gene regulatory network anchored by LIM homeobox 1 for embryonic head development. Genesis, 2018, 56, e23246.	1.6	6
32	Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq. Nature Protocols, 2017, 12, 566-580.	12.0	213
33	The genome-wide molecular regulation of mouse gastrulation embryo. Science China Life Sciences, 2017, 60, 363-369.	4.9	5
34	CRISPR-Cas9-mediated genome editing in one blastomere of two-cell embryos reveals a novel Tet3 function in regulating neocortical development. Cell Research, 2017, 27, 815-829.	12.0	35
35	Transcriptome analysis reveals determinant stages controlling human embryonic stem cell commitment to neuronal cells. Journal of Biological Chemistry, 2017, 292, 19590-19604.	3.4	29
36	Lineage specification of early embryos and embryonic stem cells at the dawn of enabling technologies. National Science Review, 2017, 4, 533-542.	9.5	5

Guangdun Peng

#	Article	IF	CITATIONS
37	Nkx2.5 marks angioblasts that contribute to hemogenic endothelium of the endocardium and dorsal aorta. ELife, 2017, 6, .	6.0	27
38	Dynamic Heterogeneity of Brachyury in Mouse Epiblast Stem Cells Mediates Distinct Response to Extrinsic Bone Morphogenetic Protein (BMP) Signaling. Journal of Biological Chemistry, 2016, 291, 15212-15225.	3.4	13
39	Spatial Transcriptome for the Molecular Annotation of Lineage Fates and Cell Identity in Mid-gastrula Mouse Embryo. Developmental Cell, 2016, 36, 681-697.	7.0	201
40	Genome-wide ChIP-seq and RNA-seq analyses of Pou3f1 during mouse pluripotent stem cell neural fate commitment. Genomics Data, 2015, 5, 375-377.	1.3	7
41	Ectodermal progenitors derived from epiblast stem cells by inhibition of Nodal signaling. Journal of Molecular Cell Biology, 2015, 7, 455-465.	3.3	24
42	Genome-wide analysis of histone acetylation dynamics during mouse embryonic stem cell neural differentiation. Genomics Data, 2015, 5, 15-16.	1.3	3
43	Histone deacetylation promotes mouse neural induction by restricting Nodal-dependent mesendoderm fate. Nature Communications, 2015, 6, 6830.	12.8	25
44	Intrinsic regulations in neural fate commitment. Development Growth and Differentiation, 2015, 57, 109-120.	1.5	24
45	The transcription factor Pou3f1 promotes neural fate commitment via activation of neural lineage genes and inhibition of external signaling pathways. ELife, 2014, 3, .	6.0	213
46	Identification of allele-specific alternative mRNA processing via transcriptome sequencing. Nucleic Acids Research, 2012, 40, e104-e104.	14.5	74
47	Accurate identification of A-to-I RNA editing in human by transcriptome sequencing. Genome Research, 2012, 22, 142-150.	5.5	297
48	Analysis of Transcriptome Complexity Through RNA Sequencing in Normal and Failing Murine Hearts. Circulation Research, 2011, 109, 1332-1341.	4.5	194
49	Expression of the IgSF protein Kirre in the rat central nervous system. Life Sciences, 2011, 88, 590-597.	4.3	2
50	Corrigendum to "Role of SIP30 in the development and maintenance of peripheral nerve injury-induced neuropathic pain―[Pain 146 (2009) 130–140]. Pain, 2010, 148, 176.	4.2	1
51	SIP30 Is Regulated by ERK in Peripheral Nerve Injury-induced Neuropathic Pain. Journal of Biological Chemistry, 2009, 284, 30138-30147.	3.4	29
52	Role of SIP30 in the development and maintenance of peripheral nerve injury-induced neuropathic pain. Pain, 2009, 146, 130-140.	4.2	22
53	Cardiac Directed Differentiation Using Small Molecule WNT Modulation at Single-Cell Resolution. SSRN Electronic Journal, 0, , .	0.4	0
54	Single-Cell Rna-Seq Reveals Cellular Heterogeneity of Pluripotency Transition and X-Chromosome Dynamics During Early Postimplantation Mouse Development. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
55	A 3D Atlas of Hematopoietic Stem and Progenitor Cell Expansion by Multi-Dimensional RNA-Seq Analysis. SSRN Electronic Journal, 0, , .	0.4	0