Gloria Lopez-Castejon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6503922/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Understanding the mechanism of IL- \hat{I}^2 secretion. Cytokine and Growth Factor Reviews, 2011, 22, 189-195.	7.2	970
2	Nanoparticles can cause DNA damage across a cellular barrier. Nature Nanotechnology, 2009, 4, 876-883.	31.5	351
3	Cell Volume Regulation Modulates NLRP3 Inflammasome Activation. Immunity, 2012, 37, 487-500.	14.3	326
4	Caspase-1: is IL-1 just the tip of the ICEberg?. Cell Death and Disease, 2012, 3, e338-e338.	6.3	217
5	NLRP3-Inflammasome Activating DAMPs Stimulate an Inflammatory Response in Glia in the Absence of Priming Which Contributes to Brain Inflammation after Injury. Frontiers in Immunology, 2012, 3, 288.	4.8	161
6	Deubiquitinases Regulate the Activity of Caspase-1 and Interleukin-1β Secretion via Assembly of the Inflammasome. Journal of Biological Chemistry, 2013, 288, 2721-2733.	3.4	154
7	Canonical and Non-Canonical Activation of NLRP3 Inflammasome at the Crossroad between Immune Tolerance and Intestinal Inflammation. Frontiers in Immunology, 2017, 8, 36.	4.8	151
8	Microglia and macrophages differentially modulate cell death after brain injury caused by oxygenâ€glucose deprivation in organotypic brain slices. Glia, 2013, 61, 813-824.	4.9	143
9	Development of an Acrylate Derivative Targeting the NLRP3 Inflammasome for the Treatment of Inflammatory Bowel Disease. Journal of Medicinal Chemistry, 2017, 60, 3656-3671.	6.4	131
10	Chloride regulates dynamic NLRP3-dependent ASC oligomerization and inflammasome priming. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9371-E9380.	7.1	131
11	USP7 and USP47 deubiquitinases regulate NLRP3 inflammasome activation. EMBO Reports, 2018, 19, .	4.5	131
12	The activation of gilthead seabream professional phagocytes by different PAMPs underlines the behavioural diversity of the main innate immune cells of bony fish. Molecular Immunology, 2007, 44, 2009-2016.	2.2	122
13	Interleukin- $1\hat{l}$ ± expression precedes IL- $1\hat{l}^2$ after ischemic brain injury and is localised to areas of focal neuronal loss and penumbral tissues. Journal of Neuroinflammation, 2011, 8, 186.	7.2	115
14	Signalling of DNA damage and cytokines across cell barriers exposed to nanoparticles depends on barrier thickness. Nature Nanotechnology, 2011, 6, 824-833.	31.5	114
15	P2X7 Receptor-Mediated Release of Cathepsins from Macrophages Is a Cytokine-Independent Mechanism Potentially Involved in Joint Diseases. Journal of Immunology, 2010, 185, 2611-2619.	0.8	99
16	Control of the inflammasome by the ubiquitin system. FEBS Journal, 2020, 287, 11-26.	4.7	92
17	Priming Is Dispensable for NLRP3 Inflammasome Activation in Human Monocytes In Vitro. Frontiers in Immunology, 2020, 11, 565924.	4.8	92
18	Turbot TNFα gene: Molecular characterization and biological activity of the recombinant protein. Molecular Immunology, 2007, 44, 389-400.	2.2	85

#	Article	IF	CITATIONS
19	Evolution of inflammasome functions in vertebrates: Inflammasome and caspase-1 trigger fish macrophage cell death but are dispensable for the processing of IL-1β. Innate Immunity, 2012, 18, 815-824.	2.4	83
20	Apoptosis-Associated Speck-like Protein Containing a CARD Forms Specks but Does Not Activate Caspase-1 in the Absence of NLRP3 during Macrophage Swelling. Journal of Immunology, 2015, 194, 1261-1273.	0.8	83
21	The colony-stimulating factor-1 receptor is a specific marker of macrophages from the bony fish gilthead seabream. Molecular Immunology, 2006, 43, 1418-1423.	2.2	82
22	Sphingosine regulates the NLRP3â€inflammasome and ILâ€1 β release from macrophages. European Journal of Immunology, 2012, 42, 716-725.	2.9	79
23	The NLRP3–inflammasome as a sensor of organelle dysfunction. Journal of Cell Biology, 2020, 219, .	5.2	79
24	Zinc depletion regulates the processing and secretion of IL-1β. Cell Death and Disease, 2014, 5, e1040-e1040.	6.3	78
25	Novel macrophage polarization model: from gene expression to identification of new anti-inflammatory molecules. Cellular and Molecular Life Sciences, 2011, 68, 3095-3107.	5.4	72
26	Two Zinc Uptake Systems Contribute to the Full Virulence of Listeria monocytogenes during Growth <i>In Vitro</i> and <i>In Vivo</i> . Infection and Immunity, 2012, 80, 14-21.	2.2	69
27	Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation. Genome Biology, 2019, 20, 171.	8.8	69
28	Current status of inflammasome blockers as anti-inflammatory drugs. Expert Opinion on Investigational Drugs, 2012, 21, 995-1007.	4.1	67
29	Mechanisms of NLRP3 priming in inflammaging and age related diseases. Cytokine and Growth Factor Reviews, 2020, 55, 15-25.	7.2	66
30	Efficient discovery of anti-inflammatory small-molecule combinations using evolutionary computing. Nature Chemical Biology, 2011, 7, 902-908.	8.0	61
31	Molecular and functional characterization of gilthead seabream Sparus aurata caspase-1: The first identification of an inflammatory caspase in fish. Molecular Immunology, 2008, 45, 49-57.	2.2	59
32	The type II interleukin-1 receptor (IL-1RII) of the bony fish gilthead seabream Sparus aurata is strongly induced after infection and tightly regulated at transcriptional and post-transcriptional levels. Molecular Immunology, 2007, 44, 2772-2780.	2.2	56
33	Dendritic Cell IL-1Î \pm and IL-1Î ² Are Polyubiquitinated and Degraded by the Proteasome. Journal of Biological Chemistry, 2014, 289, 35582-35592.	3.4	54
34	The three cytokines IL-1β, IL-18, and IL-1α share related but distinct secretory routes. Journal of Biological Chemistry, 2019, 294, 8325-8335.	3.4	52
35	Acidosis Drives Damage-associated Molecular Pattern (DAMP)-induced Interleukin-1 Secretion via a Caspase-1-independent Pathway. Journal of Biological Chemistry, 2013, 288, 30485-30494.	3.4	50
36	Characterization of ATP-gated P2X7 receptors in fish provides new insights into the mechanism of release of the leaderless cytokine interleukin-11². Molecular Immunology, 2007, 44, 1286-1299.	2.2	40

#	Article	IF	CITATIONS
37	P2X7 receptorâ€dependent tuning of gut epithelial responses to infection. Immunology and Cell Biology, 2017, 95, 178-188.	2.3	35
38	Pathophysiology of NSAID-Associated Intestinal Lesions in the Rat: Luminal Bacteria and Mucosal Inflammation as Targets for Prevention. Frontiers in Pharmacology, 2018, 9, 1340.	3.5	35
39	The inflammasomes, immune guardians at defence barriers. Immunology, 2018, 155, 320-330.	4.4	35
40	Deubiquitinases: Novel Therapeutic Targets in Immune Surveillance?. Mediators of Inflammation, 2016, 2016, 1-13.	3.0	29
41	Prodromal Intestinal Events in Alzheimer's Disease (AD): Colonic Dysmotility and Inflammation Are Associated with Enteric AD-Related Protein Deposition. International Journal of Molecular Sciences, 2020, 21, 3523.	4.1	24
42	Novel Cell Line Selectively Expressing Neuropeptide Y‥2Receptors. Journal of Receptor and Signal Transduction Research, 2003, 23, 351-360.	2.5	20
43	Inhibition of Calpain Blocks the Phagosomal Escape of Listeria monocytogenes. PLoS ONE, 2012, 7, e35936.	2.5	15
44	Internalization of the Membrane Attack Complex Triggers NLRP3 Inflammasome Activation and IL-1Î ² Secretion in Human Macrophages. Frontiers in Immunology, 2021, 12, 720655.	4.8	14
45	Bafilomycin A1 enhances NLRP3 inflammasome activation in human monocytes independent of lysosomal acidification. FEBS Journal, 2021, 288, 3186-3196.	4.7	10
46	NLRP3 at the crossroads between immune/inflammatory responses and enteric neuroplastic remodelling in a mouse model of dietâ€induced obesity. British Journal of Pharmacology, 2021, 178, 3924-3942.	5.4	9
47	Pro-IL-1β Is an Early Prognostic Indicator of Severe Donor Lung Injury During Ex Vivo Lung Perfusion. Transplantation, 2021, 105, 768-774.	1.0	7
48	Functional Reconstruction of NLRs in HEK293 Cells. Methods in Molecular Biology, 2016, 1417, 217-221.	0.9	6
49	Method to Measure Ubiquitination of NLRs. Methods in Molecular Biology, 2016, 1417, 223-229.	0.9	4
50	Response to correspondence on "Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation― Genome Biology, 2021, 22, 99.	8.8	4
51	Tu1889 Targeting of NLRP3 Inflammasome With a Novel Selective Inhibitor as a Suitable Strategy for the Pharmacological Treatment of Bowel Inflammation. Gastroenterology, 2016, 150, S968-S969.	1.3	3
52	Regulation of NLRP3 activation by the ubiquitin system. Inflammasome, 2014, 1, .	0.6	2
53	Response to Boyle etÂal Immunity, 2013, 38, 400-401.	14.3	1
54	NLRP3 inflammasome triggers interleukinâ€37 release from human monocytes. European Journal of Immunology, 2022, 52, 1141-1157.	2.9	1

#	Article	IF	CITATIONS
55	Sa1702 Alterations of Colonic Neuromuscular Excitatory Tachykininergic Pathways in a Mouse Model of Diet Induced-Obesity. Gastroenterology, 2016, 150, S351.	1.3	0
56	Editorial: Neurological, Metabolic and Inflammatory Disorders: A Common Root in Inflammasome. Frontiers in Pharmacology, 2021, 12, 808400.	3.5	0