
Lieve Van Mellaert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6503662/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Specific targeting of cytosine deaminase to solid tumors by engineered Clostridium acetobutylicum. Cancer Gene Therapy, 2001, 8, 294-297.	2.2	97
2	Radio-responsive recA promoter significantly increases TNFα production in recombinant clostridia after 2 Gy irradiation. Gene Therapy, 2001, 8, 1197-1201.	2.3	97
3	Staphylococcal biofilm growth on smooth and porous titanium coatings for biomedical applications. Journal of Biomedical Materials Research - Part A, 2014, 102, 215-224.	2.1	95
4	Recombinant protein production and streptomycetes. Journal of Biotechnology, 2012, 158, 159-167.	1.9	93
5	Colonisation ofClostridiumin the body is restricted to hypoxic and necrotic areas of tumours. Anaerobe, 1998, 4, 183-188.	1.0	85
6	Preclinical studies on thiocarboxanilide UC-781 as a virucidal agent. Aids, 1998, 12, 1129-1138.	1.0	83
7	Twin-Arginine Translocation Pathway in Streptomyces lividans. Journal of Bacteriology, 2001, 183, 6727-6732.	1.0	83
8	Protein secretion biotechnology in Gram-positive bacteria with special emphasis on Streptomyces lividans. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 1750-1761.	1.9	73
9	Spores of <i>Clostridium</i> engineered for clinical efficacy and safety cause regression and cure of tumors <i>in vivo</i> . Oncotarget, 2014, 5, 1761-1769.	0.8	72
10	Legionella pneumophila Philadelphia-1 tatB and tatC affect intracellular replication and biofilm formation. Biochemical and Biophysical Research Communications, 2005, 331, 1413-1420.	1.0	70
11	Secretory production of biologically active rat interleukin-2 byClostridium acetobutylicumDSM792 as a tool for anti-tumor treatment. FEMS Microbiology Letters, 2005, 246, 67-73.	0.7	69
12	Clostridium spores as anti-tumour agents. Trends in Microbiology, 2006, 14, 190-196.	3.5	69
13	The Use of Radiation-Induced Bacterial Promoters in Anaerobic Conditions: A Means to Control Gene Expression inClostridium-Mediated Therapy for Cancer. Radiation Research, 2001, 155, 716-723.	0.7	64
14	The importance of the Tat-dependent protein secretion pathway in Streptomyces as revealed by phenotypic changes in tat deletion mutants and genome analysis. Microbiology (United Kingdom), 2004, 150, 21-31.	0.7	64
15	Stable <i>Escherichia coli-Clostridium acetobutylicum</i> Shuttle Vector for Secretion of Murine Tumor Necrosis Factor Alpha. Applied and Environmental Microbiology, 1999, 65, 4295-4300.	1.4	63
16	The use of clostridial spores for cancer treatment. Journal of Applied Microbiology, 2006, 101, 571-578.	1.4	60
17	Streptomyces lividansas host for heterologous protein production. FEMS Microbiology Letters, 1993, 114, 121-128.	0.7	59
18	Functional large-scale production of a novel Jonesia sp. xyloglucanase by heterologous secretion from Streptomyces lividans. Journal of Biotechnology, 2006, 121, 498-507.	1.9	54

#	Article	IF	CITATIONS
19	Site-specific integration of bacteriophage VWB genome into Streptomyces venezuelae and construction of a VWB-based integrative vector. Microbiology (United Kingdom), 1998, 144, 3351-3358.	0.7	51
20	pspA overexpression in Streptomyces lividans improves both Sec- and Tat-dependent protein secretion. Applied Microbiology and Biotechnology, 2007, 73, 1150-1157.	1.7	49
21	Evaluation of a novel subtilisin inhibitor gene and mutant derivatives for the expression and secretion of mouse tumor necrosis factor alpha by Streptomyces lividans. Applied and Environmental Microbiology, 1997, 63, 1808-1813.	1.4	49
22	Tumor-Specific Gene Delivery Using Genetically Engineered Bacteria. Current Gene Therapy, 2003, 3, 207-221.	0.9	48
23	Clostridium spores for tumor-specific drug delivery. Anti-Cancer Drugs, 2002, 13, 115-125.	0.7	47
24	Comparison of the Sec and Tat secretion pathways for heterologous protein production by Streptomyces lividans. Journal of Biotechnology, 2004, 112, 279-288.	1.9	43
25	Reduction of Biofilm Infection Risks and Promotion of Osteointegration for Optimized Surfaces of Titanium Implants. Advanced Healthcare Materials, 2012, 1, 117-127.	3.9	43
26	Efficient isolation of total RNA from Clostridium without DNA contamination. Journal of Microbiological Methods, 2001, 44, 235-238.	0.7	41
27	A putative twin-arginine translocation pathway in Legionella pneumophila. Biochemical and Biophysical Research Communications, 2004, 317, 654-661.	1.0	41
28	Large-scale production of a thermostable Rhodothermus marinus cellulase by heterologous secretion from Streptomyces lividans. Microbial Cell Factories, 2017, 16, 232.	1.9	40
29	Characterization of the <i>Streptomyces lividans</i> PspA Response. Journal of Bacteriology, 2008, 190, 3475-3481.	1.0	36
30	Inefficacy of vancomycin and teicoplanin in eradicating and killing Staphylococcus epidermidis biofilms in vitro. International Journal of Antimicrobial Agents, 2015, 45, 368-375.	1.1	36
31	Electrophoretic deposition of bacterial cells. Electrochemistry Communications, 2009, 11, 1842-1845.	2.3	35
32	Efficient secretion of biologically active mouse tumor necrosis factor $\hat{l}\pm$ by Streptomyces lividans. Gene, 1994, 150, 153-158.	1.0	32
33	Functional analysis of TatA and TatB in Streptomyces lividans. Biochemical and Biophysical Research Communications, 2005, 335, 973-982.	1.0	31
34	Immunoprophylaxis and immunotherapy of <i>Staphylococcus epidermidis</i> infections: challenges and prospects. Expert Review of Vaccines, 2012, 11, 319-334.	2.0	31
35	Optimum conditions for efficient transformation ofStreptomyces venezuelae protoplasts. Applied Microbiology and Biotechnology, 1990, 32, 431-435.	1.7	30
36	Complete genomic nucleotide sequence and analysis of the temperate bacteriophage VWB. Virology, 2005, 331, 325-337.	1.1	29

#	Article	IF	CITATIONS
37	Recombinant production of Streptococcus equisimilis streptokinase by Streptomyces lividans. Microbial Cell Factories, 2007, 6, 20.	1.9	27
38	Influence of charge variation in the Streptomyces venezuelae a-amylase signal peptide on heterologous protein production by Streptomyces lividans. Applied Microbiology and Biotechnology, 1998, 49, 424-430.	1.7	26
39	Insertion or Deletion of the Cheo Box Modifies Radiation Inducibility of Clostridium Promoters. Applied and Environmental Microbiology, 2001, 67, 4464-4470.	1.4	26
40	Structural organization of the twin-arginine translocation system inStreptomyces lividans. FEBS Letters, 2005, 579, 797-802.	1.3	26
41	Molecular Characterization of a Novel Subtilisin Inhibitor Protein Produced by Streptomyces venezuelae CBS762.70. DNA Sequence, 1998, 9, 19-30.	0.7	24
42	Molecular and functional characterization of type I signal peptidase from Legionella pneumophila. Microbiology (United Kingdom), 2004, 150, 1475-1483.	0.7	22
43	Isolation of high quality RNA from Streptomyces. Journal of Microbiological Methods, 2004, 58, 135-137.	0.7	22
44	The Possible Role of Staphylococcus epidermidis LPxTG Surface Protein SesC in Biofilm Formation. PLoS ONE, 2016, 11, e0146704.	1.1	22
45	Evaluation of TatABC overproduction on Tat- and Sec-dependent protein secretion in Streptomyces lividans. Archives of Microbiology, 2006, 186, 507-512.	1.0	20
46	First proteomic analysis of Legionella pneumophila based on its developing genome sequence. Research in Microbiology, 2005, 156, 119-129.	1.0	19
47	Family-wide analysis of aminoacyl-sulfamoyl-3-deazaadenosine analogues as inhibitors of aminoacyl-tRNA synthetases. European Journal of Medicinal Chemistry, 2018, 148, 384-396.	2.6	19
48	Streptomyces as host for recombinant production of Mycobacterium tuberculosis proteins. Tuberculosis, 2006, 86, 198-202.	0.8	18
49	Controlled release of chlorhexidine antiseptic from microporous amorphous silica applied in open porosity of an implant surface. International Journal of Pharmaceutics, 2011, 419, 28-32.	2.6	18
50	Bacterial colonisation of porous titanium coatings for orthopaedic implant applications – effect of surface roughness and porosity. Powder Metallurgy, 2013, 56, 267-271.	0.9	18
51	Transcriptomic and fluxomic changes in Streptomyces lividans producing heterologous protein. Microbial Cell Factories, 2018, 17, 198.	1.9	18
52	Membrane Topology of the Streptomyces lividans Type I Signal Peptidases. Journal of Bacteriology, 2001, 183, 4752-4760.	1.0	17
53	Analysis of type I signal peptidase affinity and specificity for preprotein substrates. Biochemical and Biophysical Research Communications, 2004, 314, 459-467.	1.0	17
54	Inactivation of the 20S proteasome in Streptomyces lividans and its influence on the production of heterologous proteins. Microbiology (United Kingdom), 2005, 151, 3137-3145.	0.7	16

#	Article	IF	CITATIONS
55	The Tat pathway in Streptomyces lividans: interaction of Tat subunits and their role in translocation. Microbiology (United Kingdom), 2007, 153, 1087-1094.	0.7	16
56	Use of Strep-tag II for rapid detection and purification of Mycobacterium tuberculosis recombinant antigens secreted by Streptomyces lividans. Journal of Microbiological Methods, 2013, 94, 192-198.	0.7	16
57	Improved PCR-based method for the direct screening of Streptomyces transformants. Journal of Microbiological Methods, 2003, 53, 401-403.	0.7	15
58	Novel transcriptional regulators of Legionella pneumophila that affect replication in Acanthamoeba castellanii. Archives of Microbiology, 2004, 181, 362-370.	1.0	14
59	Evaluation of the type I signal peptidase as antibacterial target for biofilm-associated infections of Staphylococcus epidermidis. Microbiology (United Kingdom), 2009, 155, 3719-3729.	0.7	13
60	Codon adjustment to maximise heterologous gene expression inStreptomyces lividans can lead to decreased mRNA stability and protein yield. Molecular Genetics and Genomics, 1996, 250, 223-229.	2.4	11
61	TheSip(Sli)Gene ofStreptomyces LividansTK24 Specifies an Unusual Signal Peptidase with a Putative C-Terminal Transmembrane Anchor. DNA Sequence, 1998, 9, 79-88.	0.7	11
62	Monitoring Protein Secretion in Streptomyces Using Fluorescent Proteins. Frontiers in Microbiology, 2018, 9, 3019.	1.5	11
63	On the influence of overexpression of phosphoenolpyruvate carboxykinase in Streptomyces lividans on growth and production of human tumour necrosis factor-alpha. Applied Microbiology and Biotechnology, 2012, 96, 367-372.	1.7	10
64	Metabolic impact assessment for heterologous protein production in Streptomyces lividans based on genome-scale metabolic network modeling. Mathematical Biosciences, 2013, 246, 113-121.	0.9	10
65	Ses proteins as possible targets for vaccine development against Staphylococcus epidermidis infections. Journal of Infection, 2018, 77, 119-130.	1.7	10
66	Physical requirements for in vitro processing of the Streptomyces lividans signal peptidases. Journal of Biotechnology, 2002, 96, 79-91.	1.9	9
67	The type II signal peptidase of Legionella pneumophila. Research in Microbiology, 2006, 157, 836-841.	1.0	9
68	Surface plasmon resonance-based interaction studies reveal competition of Streptomyces lividans type I signal peptidases for binding preproteins. Microbiology (United Kingdom), 2006, 152, 1441-1450.	0.7	9
69	Scalable Synthesis, In Vitro cccDNA Reduction, and In Vivo Antihepatitis B Virus Activity of a Phosphonomethoxydeoxythreosyl Adenine Prodrug. Journal of Medicinal Chemistry, 2020, 63, 13851-13860.	2.9	8
70	Gram-Positive Bacteria as Host Cells for Heterologous Production of Biopharmaceuticals. Focus on Biotechnology, 2001, , 277-300.	0.4	7
71	Analysis of the open reading frames of the main capsid proteins of actinophage VWB. Archives of Virology, 1995, 140, 1033-1047.	0.9	6
72	Real-time quantitative RT–PCR and detection of tumour cell dissemination in breast cancer patients: plasmid versus cell line dilutions. Annals of Oncology, 2003, 14, 1241-1245.	0.6	6

#	Article	IF	CITATIONS
73	Cloning and Expression Vectors for a Gram-Positive Host, Streptomyces lividans. Methods in Molecular Biology, 2010, 668, 97-107.	0.4	6
74	sesC as a genetic marker for easy identification of Staphylococcus epidermidis from other isolates. Infection, Genetics and Evolution, 2016, 43, 222-224.	1.0	6
75	Perturbation of Alphavirus and Flavivirus Infectivity by Components of the Bacterial Cell Wall. Journal of Virology, 2022, 96, jvi0006022.	1.5	3
76	Assessment of an ELISA for serodiagnosis of active pulmonary tuberculosis in a Cuban population. Asian Pacific Journal of Tropical Disease, 2015, 5, 772-778.	0.5	2
77	Immune Response to Streptomyces lividans in Mice: A Potential Vaccine Vehicle Against TB. The Open Vaccine Journal, 2009, 2, 85-91.	0.6	2
78	Clostridia As Production Systems for Prokaryotic and Eukaryotic Proteins of Therapeutic Value in Tumor Treatment. , 2005, , 877-893.		2
79	Clostridium-Mediated Transfer of Therapeutic Proteins to Solid Tumors. , 2003, , 527-546.		1
80	The use of the cMyc epitope tag can be problematic for protein detection in Legionella pneumophila. Journal of Microbiological Methods, 2004, 59, 131-134.	0.7	1
81	Confocal Microscope Studies of Living Cells Deposited Using Alternating Current Electrophoretic Deposition (AC-EPD). Key Engineering Materials, 2012, 507, 121-126.	0.4	1
82	Increasing specificity of Clostridium mediated protein transfer via radiotherapy: the use of bacterial radio-induced promoters. European Journal of Cancer, 2001, 37, S274.	1.3	0
83	Codon adjustment to maximise heterologous gene expression in. Molecular Genetics and Genomics, 1996, 250, 223.	2.4	Ο