
Radek Cibulka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6503640/publications.pdf Version: 2024-02-01

PADER CIRLIERA

#	Article	IF	CITATIONS
1	Photophysical properties of alloxazine derivatives with extended aromaticity – Potential redox-sensitive fluorescent probe. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 272, 120985.	2.0	4
2	Tuning Deazaflavins Towards Highly Potent Reducing Photocatalysts Guided by Mechanistic Understanding – Enhancement of the Key Step by the Internal Heavy Atom Effect. Chemistry - A European Journal, 2022, 28, .	1.7	11
3	Photocatalytic Oxidative [2+2] Cycloelimination Reactions with Flavinium Salts: Mechanistic Study and Influence of the Catalyst Structure. ChemPlusChem, 2021, 86, 373-386.	1.3	10
4	Robust Photocatalytic Method Using Ethyleneâ€Bridged Flavinium Salts for the Aerobic Oxidation of Unactivated Benzylic Substrates. Advanced Synthesis and Catalysis, 2021, 363, 4371-4379.	2.1	12
5	Flavinâ€Helicene Amphiphilic Hybrids: Synthesis, Characterization, and Preparation of Surfaceâ€Supported Films. ChemPlusChem, 2021, 86, 982-990.	1.3	3
6	Amide Bond Formation via Aerobic Photooxidative Coupling of Aldehydes with Amines Catalyzed by a Riboflavin Derivative. Organic Letters, 2021, 23, 6825-6830.	2.4	28
7	Visibleâ€Lightâ€Induced Diâ€Ï€â€Methane Rearrangement of Dibenzobarrelene Derivatives. ChemPhotoChem, 2020, 4, 132-137.	1.5	2
8	Tuning Flavinâ€Based Photocatalytic Systems for Application in the Mild Chemoselective Aerobic Oxidation of Benzylic Substrates. European Journal of Organic Chemistry, 2020, 2020, 1579-1585.	1.2	30
9	Deazaflavin reductive photocatalysis involves excited semiquinone radicals. Nature Communications, 2020, 11, 3174.	5.8	37
10	3. Flavin photocatalysis. , 2020, , 45-72.		6
11	Strong chemical reducing agents produced by light. Nature, 2020, 580, 31-32.	13.7	6
12	Flavinium Catalysed Photooxidation: Detection and Characterization of Elusive Peroxyflavinium Intermediates. Angewandte Chemie - International Edition, 2019, 58, 15412-15420.	7.2	29
13	Titelbild: Flavinium Catalysed Photooxidation: Detection and Characterization of Elusive Peroxyflavinium Intermediates (Angew. Chem. 43/2019). Angewandte Chemie, 2019, 131, 15305-15305.	1.6	0
14	Flavinium Catalysed Photooxidation: Detection and Characterization of Elusive Peroxyflavinium Intermediates. Angewandte Chemie, 2019, 131, 15558-15566.	1.6	5
15	Flavin Catalysis Employing an N(5)â€Adduct: an Application in the Aerobic Organocatalytic Mitsunobu Reaction. European Journal of Organic Chemistry, 2019, 2019, 3264-3268.	1.2	9
16	Nitrosobenzene: Reagent for the Mitsunobu Esterification Reaction. ACS Omega, 2019, 4, 5012-5018.	1.6	5
17	Combining Flavin Photocatalysis and Organocatalysis: Metal-Free Aerobic Oxidation of Unactivated Benzylic Substrates. Organic Letters, 2019, 21, 114-119.	2.4	79
18	Spatially Resolved Covalent Functionalization Patterns on Graphene. Angewandte Chemie, 2019, 131, 1338-1342.	1.6	6

RADEK CIBULKA

#	Article	IF	CITATIONS
19	Spatially Resolved Covalent Functionalization Patterns on Graphene. Angewandte Chemie - International Edition, 2019, 58, 1324-1328.	7.2	14
20	Flavin derivatives immobilized on mesoporous silica: a versatile tool in visible-light photooxidation reactions. Monatshefte Für Chemie, 2018, 149, 863-869.	0.9	14
21	Flavin Photocatalysts for Visibleâ€Light [2+2] Cycloadditions: Structure, Reactivity and Reaction Mechanism. ChemCatChem, 2018, 10, 849-858.	1.8	23
22	Molecular dynamics and metadynamics simulations of [2 + 2] photocycloaddition. International Journal of Quantum Chemistry, 2018, 118, e25534.	1.0	7
23	Azodicarboxylate-free esterification with triphenylphosphine mediated by flavin and visible light: method development and stereoselectivity control. Organic and Biomolecular Chemistry, 2018, 16, 6809-6817.	1.5	30
24	Flavin photocatalysis. Physical Sciences Reviews, 2018, 3, .	0.8	27
25	Visible Light [2+2] Photocycloaddition Mediated by Flavin Derivative Immobilized on Mesoporous Silica. ChemCatChem, 2017, 9, 1177-1181.	1.8	24
26	Photocatalytic esterification under Mitsunobu reaction conditions mediated by flavin and visible light. Organic and Biomolecular Chemistry, 2017, 15, 1970-1975.	1.5	32
27	Flavinâ€Mediated Visibleâ€Light [2+2] Photocycloaddition of Nitrogen―and Sulfurâ€Containing Dienes. European Journal of Organic Chemistry, 2017, 2017, 2139-2146.	1.2	28
28	Chiral ethylene-bridged flavinium salts: the stereoselectivity of flavin-10a-hydroperoxide formation and the effect of substitution on the photochemical properties. Tetrahedron: Asymmetry, 2017, 28, 1780-1791.	1.8	10
29	Efficient Metalâ€Free Aerobic Photooxidation of Sulfides to Sulfoxides Mediated by a Vitamin B ₂ Derivative and Visible Light. Advanced Synthesis and Catalysis, 2016, 358, 1654-1663.	2.1	124
30	Photocatalytic Systems with Flavinium Salts: From Photolyase Models to Synthetic Tool for Cyclobutane Ring Opening. Organic Letters, 2016, 18, 3710-3713.	2.4	34
31	Twoâ€Phase Oxidations with Aqueous Hydrogen Peroxide Catalyzed by Amphiphilic Pyridinium and Diazinium Salts. Advanced Synthesis and Catalysis, 2015, 357, 3573-3586.	2.1	12
32	A Click Chemistry Approach towards Flavin-Cyclodextrin Conjugates—Bioinspired Sulfoxidation Catalysts. Molecules, 2015, 20, 19837-19848.	1.7	8
33	Electron-Deficient Heteroarenium Salts: An Organocatalytic Tool for Activation of Hydrogen Peroxide in Oxidations. Journal of Organic Chemistry, 2015, 80, 2676-2699.	1.7	43
34	Tailoring flavins for visible light photocatalysis: organocatalytic [2+2] cycloadditions mediated by a flavin derivative and visible light. Chemical Communications, 2015, 51, 12036-12039.	2.2	91
35	Urea derivatives based on a 1,1′-binaphthalene skeleton as chiral solvating agents for sulfoxides. Tetrahedron: Asymmetry, 2015, 26, 1328-1334.	1.8	15
36	Artificial Flavin Systems for Chemoselective and Stereoselective Oxidations. European Journal of Organic Chemistry, 2015, 2015, 915-932.	1.2	95

RADEK CIBULKA

#	Article	IF	CITATIONS
37	Biomimetic aerobic oxidative hydroxylation of arylboronic acids to phenols catalysed by a flavin derivative. Organic and Biomolecular Chemistry, 2014, 12, 2137.	1.5	61
38	Phaseâ€Transfer Catalysis in Oxidations Based on the Covalent Bonding of Hydrogen Peroxide to Amphiphilic Flavinium Salts. ChemCatChem, 2014, 6, 2843-2846.	1.8	13
39	Aggregation Effects in Visibleâ€Light Flavin Photocatalysts: Synthesis, Structure, and Catalytic Activity of 10â€Arylflavins. Chemistry - A European Journal, 2013, 19, 1066-1075.	1.7	37
40	Planar Chiral Flavinium Salts: Synthesis and Evaluation of the Effect of Substituents on the Catalytic Efficiency in Enantioselective Sulfoxidation Reactions. European Journal of Organic Chemistry, 2013, 2013, 7724-7738.	1.2	25
41	Electronâ€Deficient Alloxazinium Salts: Efficient Organocatalysts of Mild and Chemoselective Sulfoxidations with Hydrogen Peroxide. Advanced Synthesis and Catalysis, 2013, 355, 3451-3462.	2.1	25
42	4 Flavin photocatalysis. , 2013, , 45-66.		5
43	Flavin–cyclodextrin conjugates: effect of the structure on the catalytic activity in enantioselective sulfoxidations. Tetrahedron: Asymmetry, 2012, 23, 1571-1583.	1.8	32
44	Synthesis of Symmetrical Dinitro―and Diamino‣ubstituted Tröger's Base Analogues. European Journal of Organic Chemistry, 2012, 2012, 7066-7074.	1.2	16
45	Insight into the catalytic activity of alloxazinium and isoalloxazinium salts in the oxidations of sulfides and amines with hydrogen peroxide. Journal of Molecular Catalysis A, 2012, 363-364, 362-370.	4.8	27
46	Photooxidation of Sulfides to Sulfoxides Mediated by Tetraâ€ <i>O</i> â€Acetylriboflavin and Visible Light. ChemCatChem, 2012, 4, 620-623.	1.8	117
47	Synthesis and structural studies of flavin and alloxazine adducts with O-nucleophiles. Journal of Molecular Structure, 2011, 1004, 178-187.	1.8	14
48	Alloxazine–cyclodextrin conjugates for organocatalytic enantioselective sulfoxidations. Organic and Biomolecular Chemistry, 2011, 9, 7318.	1.5	48
49	Pyrazinium Salts as Efficient Organocatalysts of Mild Oxidations with Hydrogen Peroxide. Advanced Synthesis and Catalysis, 2011, 353, 865-870.	2.1	32
50	Synthesis of Flavin–Calix[4]arene Conjugate Derivatives. Helvetica Chimica Acta, 2011, 94, 481-486.	1.0	20
51	Constrained open mapping theorem with applications. Journal of Mathematical Analysis and Applications, 2011, 379, 205-215.	0.5	6
52	Planar Chiral Flavinium Salts – Prospective Catalysts for Enantioselective Sulfoxidation Reactions. European Journal of Organic Chemistry, 2010, 2010, 5217-5224.	1.2	57
53	N1,N10-Ethylene-bridged flavinium salts derived from l-valinol: synthesis and catalytic activity in H2O2 oxidations. Tetrahedron Letters, 2010, 51, 1083-1086.	0.7	53
54	10-Methylisoalloxazine 5-oxide from synchrotron powder diffraction data. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o3350-o3351.	0.2	0

RADEK CIBULKA

#	Article	IF	CITATIONS
55	Flavin–cyclodextrin conjugates as catalysts of enantioselective sulfoxidations with hydrogen peroxide in aqueous media. Chemical Communications, 2010, 46, 7599.	2.2	60
56	Catalytic effect of alloxazinium and isoalloxazinium salts on oxidation of sulfides with hydrogen peroxide in micellar media. Collection of Czechoslovak Chemical Communications, 2009, 74, 973-993.	1.0	22
57	5-Ethyl-4a-methoxy-1,3-dimethyl-4a,5-dihydrobenzo[g]pteridine-2,4(1H,3H)dione. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o1536-o1537.	0.2	1
58	Reactivity in Micelles - Are We Really Able to Design Micellar Catalysts?. Collection of Czechoslovak Chemical Communications, 2008, 73, 127-146.	1.0	6
59	Organocatalytic sulfoxidation in micellar systems containing amphiphilic flavinium salts using hydrogen peroxide as a terminal oxidant. Journal of Molecular Catalysis A, 2007, 277, 53-60.	4.8	36
60	Cleavage of 4-Nitrophenyl Diphenyl Phosphate by Isomeric Quaternary Pyridinium Ketoximes - How Can Structure and Lipophilicity of Functional Surfactants Influence Their Reactivity in Micelles and Microemulsions?. Collection of Czechoslovak Chemical Communications, 2006, 71, 1642-1658.	1.0	20
61	Metal Ion Transport Through Bulk Liquid Membrane Mediated by Cationic Ligand Surfactants. Collection of Czechoslovak Chemical Communications, 2005, 70, 441-465.	1.0	3
62	Catalytic Photooxidation of 4-Methoxybenzyl Alcohol with a Flavin-Zinc(II)-Cyclen Complex. Chemistry - A European Journal, 2004, 10, 6223-6231.	1.7	83
63	Reactivity of p-Substituted Benzaldoximes in the Cleavage of p-Nitrophenyl Acetate: Kinetics and Mechanism. Collection of Czechoslovak Chemical Communications, 2004, 69, 397-413.	1.0	9
64	Design, Synthesis, and Evaluation of a Biomimetic Artificial Photolyase Model. Journal of Organic Chemistry, 2004, 69, 8183-8185.	1.7	29
65	Reparametrization and/or Determination of Hammett, Inductive, Mesomeric and AISE Substituent Constants for Five Substituents: N+(CH3)3, CH2N+(CH3)3, CH2Py+, CH2SO2CH3 and PO(OCH3)2. Collection of Czechoslovak Chemical Communications, 2004, 69, 2239-2252.	1.0	19
66	Electrochemical Reductions of Ni2+, Cu2+ and Zn2+ Complexes of Azinyl Methyl Ketoximes on Mercury. Collection of Czechoslovak Chemical Communications, 2001, 66, 170-184.	1.0	9
67	Inhibition of copper amine oxidases by pyridine-derived aldoximes and ketoximes. Biochimie, 2001, 83, 995-1002.	1.3	9
68	Amphiphilic quaternary pyridinium ketoximes as functional hydrolytic micellar catalysts — does the nucleophilic function position influence their reactivity?. Journal of Molecular Catalysis A, 2001, 174, 59-62.	4.8	20
69	Electrochemical Reductions of Methyl Azinyl Ketoximes on Mercury. Collection of Czechoslovak Chemical Communications, 2000, 65, 1630-1642.	1.0	2
70	Quaternary Pyridinium Ketoximes - New Efficient Micellar Hydrolytic Catalysts. Collection of Czechoslovak Chemical Communications, 2000, 65, 227-242.	1.0	21
71	Metal Ion Chelates of Lipophilic Alkyl Diazinyl Ketoximes as Hydrolytic Catalysts. Collection of Czechoslovak Chemical Communications, 1999, 64, 1159-1179.	1.0	17
72	Lipophilic N-[2-hydroxyimino-2-(pyridin-2-yl)ethyl]trialkylammonium salts - new ligands for metal ion extractions into organic solvents. Tetrahedron Letters, 1999, 40, 6849-6852.	0.7	9

#	Article	IF	CITATIONS
73	Unusual Course of the p-Nitrophenyl Phosphate Esters Cleavage by 3-Hydroxyiminoalkylpyridinium Salts in Micellar Solutions. Chemistry Letters, 1998, 27, 649-650.	0.7	4
74	Metallomicellar Hydrolytic Catalysts Containing Ligand Surfactants Derived from Alkyl Pyridin-2-yl Ketoxime. Collection of Czechoslovak Chemical Communications, 1997, 62, 1342-1354.	1.0	13