Bo Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6503331/publications.pdf

Version: 2024-02-01

114278 94269 4,329 90 37 63 citations h-index g-index papers 4109 92 92 92 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	A Europium(III) Complex as an Efficient Singlet Oxygen Luminescence Probe. Journal of the American Chemical Society, 2006, 128, 13442-13450.	6.6	342
2	Bioanalytical methods for hypochlorous acid detection: Recent advances and challenges. TrAC - Trends in Analytical Chemistry, 2018, 99, 1-33.	5.8	190
3	A Stimuliâ€Responsive Smart Lanthanide Nanocomposite for Multidimensional Optical Recording and Encryption. Angewandte Chemie - International Edition, 2017, 56, 2689-2693.	7.2	181
4	Luminescent Bimetallic Lanthanide Bioprobes for Cellular Imaging with Excitation in the Visible‣ight Range. Chemistry - A European Journal, 2009, 15, 885-900.	1.7	149
5	"Dual-Key-and-Lock―Ruthenium Complex Probe for Lysosomal Formaldehyde in Cancer Cells and Tumors. Journal of the American Chemical Society, 2019, 141, 8462-8472.	6.6	135
6	A Stimuliâ∈Responsive Smart Lanthanide Nanocomposite for Multidimensional Optical Recording and Encryption. Angewandte Chemie, 2017, 129, 2733-2737.	1.6	132
7	Nitroreductase-Activatable Theranostic Molecules with High PDT Efficiency under Mild Hypoxia Based on a TADF Fluorescein Derivative. ACS Applied Materials & Emp; Interfaces, 2019, 11, 15426-15435.	4.0	118
8	A unique iridium(III) complex-based chemosensor for multi-signal detection and multi-channel imaging of hypochlorous acid in liver injury. Biosensors and Bioelectronics, 2017, 87, 1005-1011.	5. 3	117
9	A ruthenium(II) complex-based lysosome-targetable multisignal chemosensor for inÂvivo detection of hypochlorous acid. Biomaterials, 2015, 68, 21-31.	5.7	113
10	A Versatile Ditopic Ligand System for Sensitizing the Luminescence of Bimetallic Lanthanide Bioâ€lmaging Probes. Chemistry - A European Journal, 2008, 14, 1726-1739.	1.7	107
11	Development of a Novel Lysosome-Targeted Ruthenium(II) Complex for Phosphorescence/Time-Gated Luminescence Assay of Biothiols. Analytical Chemistry, 2017, 89, 4517-4524.	3.2	105
12	Dual-emissive nanoarchitecture of lanthanide-complex-modified silica particles for in vivo ratiometric time-gated luminescence imaging of hypochlorous acid. Chemical Science, 2017, 8, 150-159.	3.7	99
13	Quantitative Monitoring and Visualization of Hydrogen Sulfide Inâ€Vivo Using a Luminescent Probe Based on a Ruthenium(II) Complex. Angewandte Chemie - International Edition, 2018, 57, 3999-4004.	7.2	98
14	A Polyoxyethylene‧ubstituted Bimetallic Europium Helicate for Luminescent Staining of Living Cells. Chemistry - A European Journal, 2007, 13, 9515-9526.	1.7	97
15	A new europium chelate-based phosphorescence probe specific for singlet oxygen. Chemical Communications, 2005, , 3553.	2.2	91
16	Time-resolved luminescence microscopy of bimetallic lanthanide helicates in living cells. Organic and Biomolecular Chemistry, 2008, 6, 4125.	1.5	90
17	Mitochondria Targetable Time-Gated Luminescence Probe for Singlet Oxygen Based on a β-Diketonate–Europium Complex. Inorganic Chemistry, 2015, 54, 11660-11668.	1.9	85
18	Bioconjugated lanthanide luminescent helicates as multilabels for lab-on-a-chip detection of cancer biomarkers. Analyst, The, 2010, 135, 42-52.	1.7	84

#	Article	IF	CITATIONS
19	Development of a Ruthenium(II) Complex-Based Luminescent Probe for Hypochlorous Acid in Living Cells. Inorganic Chemistry, 2013, 52, 10325-10331.	1.9	76
20	Development of a novel lysosome-targetable time-gated luminescence probe for ratiometric and luminescence lifetime detection of nitric oxide in vivo. Chemical Science, 2017, 8, 1969-1976.	3.7	76
21	A Lanthanide Complex-Based Ratiometric Luminescence Probe for Time-Gated Luminescence Detection of Intracellular Thiols. Analytical Chemistry, 2013, 85, 11658-11664.	3.2	72
22	Multiphoton-Excited Luminescent Lanthanide Bioprobes: Two- and Three-Photon Cross Sections of Dipicolinate Derivatives and Binuclear Helicates. Journal of Physical Chemistry B, 2010, 114, 2932-2937.	1.2	70
23	Ratiometric Time-Gated Luminescence Probe for Hydrogen Sulfide Based on Lanthanide Complexes. Analytical Chemistry, 2014, 86, 11883-11889.	3.2	66
24	Mitochondria-Targetable Ratiometric Time-Gated Luminescence Probe for Carbon Monoxide Based on Lanthanide Complexes. Analytical Chemistry, 2019, 91, 2939-2946.	3.2	51
25	On-Chip Immunoassay Using Electrostatic Assembly of Streptavidin-Coated Bead Micropatterns. Analytical Chemistry, 2009, 81, 6509-6515.	3.2	50
26	Highly sensitive and selective phosphorescent chemosensors for hypochlorous acid based on ruthenium(II) complexes. Biosensors and Bioelectronics, 2013, 50, 1-7.	5.3	49
27	Development of a novel FePt-based multifunctional ferroptosis agent for high-efficiency anticancer therapy. Nanoscale, 2018, 10, 17858-17864.	2.8	47
28	Selective Breast Cancer Cell Capture, Culture, and Immunocytochemical Analysis Using Self-Assembled Magnetic Bead Patterns in a Microfluidic Chip. Langmuir, 2010, 26, 6091-6096.	1.6	46
29	A mitochondria-targeting time-gated luminescence probe for hypochlorous acid based on a europium complex. Journal of Materials Chemistry B, 2017, 5, 2849-2855.	2.9	44
30	Effect of the length of polyoxyethylene substituents on luminescent bimetallic lanthanide bioprobes. New Journal of Chemistry, 2008, 32, 1140.	1.4	43
31	Development of a functional ruthenium(ii) complex for probing hypochlorous acid in living cells. Dalton Transactions, 2014, 43, 8414.	1.6	43
32	A ruthenium(<scp>ii</scp>) complex–cyanine energy transfer scaffold based luminescence probe for ratiometric detection and imaging of mitochondrial peroxynitrite. Chemical Communications, 2018, 54, 13698-13701.	2.2	43
33	A new terbium(III) chelate as an efficient singlet oxygen fluorescence probe. Free Radical Biology and Medicine, 2006, 40, 1644-1653.	1.3	42
34	Red-Emitting Ruthenium(II) and Iridium(III) Complexes as Phosphorescent Probes for Methylglyoxal in Vitro and in Vivo. Inorganic Chemistry, 2017, 56, 1309-1318.	1.9	42
35	Iridium(III) Complexâ€Based Activatable Probe for Phosphorescent/Timeâ€Gated Luminescent Sensing and Imaging of Cysteine in Mitochondria of Live Cells and Animals. Chemistry - A European Journal, 2019, 25, 1498-1506.	1.7	40
36	"Two Birds with One Stone―Ruthenium(II) Complex Probe for Biothiols Discrimination and Detection In Vitro and In Vivo. Advanced Science, 2020, 7, 2000458.	5.6	40

#	Article	IF	CITATIONS
37	Synthesis and time-resolved fluorimetric application of a europium chelate-based phosphorescence probe specific for singlet oxygen. New Journal of Chemistry, 2005, 29, 1431.	1.4	37
38	Background-free in-vivo Imaging of Vitamin C using Time-gateable Responsive Probe. Scientific Reports, 2015, 5, 14194.	1.6	37
39	Bimodal Phosphorescence–Magnetic Resonance Imaging Nanoprobes for Glutathione Based on MnO ₂ Nanosheet–Ru(II) Complex Nanoarchitecture. ACS Applied Materials & mp; Interfaces, 2018, 10, 27681-27691.	4.0	37
40	Precise Monitoring of Drug-Induced Kidney Injury Using an Endoplasmic Reticulum-Targetable Ratiometric Time-Gated Luminescence Probe for Superoxide Anions. Analytical Chemistry, 2019, 91, 14019-14028.	3.2	37
41	A FRET chemosensor for hypochlorite with large Stokes shifts and long-lifetime emissions. Sensors and Actuators B: Chemical, 2018, 262, 958-965.	4.0	36
42	A europium(iii)-based PARACEST agent for sensing singlet oxygen by MRI. Dalton Transactions, 2013, 42, 8066.	1.6	35
43	Ratiometric Time-Gated Luminescence Probe for Nitric Oxide Based on an Apoferritin-Assembled Lanthanide Complex-Rhodamine Luminescence Resonance Energy Transfer System. Analytical Chemistry, 2015, 87, 10878-10885.	3.2	35
44	Development of organelle-targetable europium complex probes for time-gated luminescence imaging of hypochlorous acid in live cells and animals. Dyes and Pigments, 2017, 140, 407-416.	2.0	35
45	Increasing the efficiency of lanthanide luminescent bioprobes: bioconjugated silica nanoparticles as markers for cancerous cells. New Journal of Chemistry, 2010, 34, 2915.	1.4	33
46	A versatile method for quantification of DNA and PCR products based on time-resolved Euiii luminescence. Analyst, The, 2008, 133, 1749.	1.7	32
47	Time-resolved lanthanide luminescence for lab-on-a-chip detection of biomarkers on cancerous tissues. Analyst, The, 2009, 134, 1991.	1.7	32
48	Enabling the Triplet of Tetraphenylethene to Sensitize the Excited State of Europium(III) for Protein Detection and Timeâ€Resolved Luminescence Imaging. Advanced Science, 2016, 3, 1600146.	5.6	31
49	Enhanced Thermally Activated Delayed Fluorescence in New Fluorescein Derivatives By Introducing Aromatic Carbonyl Groups. ChemPhotoChem, 2017, 1, 79-83.	1.5	29
50	Extending the excitation wavelength from UV to visible light for a europium complex-based mitochondria targetable luminescent probe for singlet oxygen. Dalton Transactions, 2018, 47, 12852-12857.	1.6	29
51	A dual-targeted theranostic photosensitizer based on a TADF fluorescein derivative. Journal of Controlled Release, 2019, 310, 1-10.	4.8	29
52	A ratiometric time-gated luminescence probe for hydrogen sulfide based on copper(II)-coupled lanthanide complexes. Analytica Chimica Acta, 2019, 1049, 152-160.	2.6	28
53	Critical Role of Organoamines in the Irreversible Degradation of a Metal Halide Perovskite Precursor Colloid: Mechanism and Inhibiting Strategy. ACS Energy Letters, 2022, 7, 481-489.	8.8	26
54	Luminescence and Raman spectroscopic studies on the damage of tryptophan, histidine and carnosine by singlet oxygen. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 189, 39-45.	2.0	24

#	Article	IF	CITATIONS
55	Preparation of visible-light-excited europium biolabels for time-resolved luminescence cell imaging application. Talanta, 2013, 108, 143-149.	2.9	23
56	Syntheses of new chlorin derivatives containing maleimide functional group and their photodynamic activity evaluation. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4078-4081.	1.0	23
57	Development of singlet oxygen-responsive phosphorescent ruthenium(ii) complexes. Dalton Transactions, 2013, 42, 14380.	1.6	22
58	A visible-light-excitable mitochondria-targeted europium complex probe for hypochlorous acid and its application to time-gated luminescence bioimaging. Biosensors and Bioelectronics, 2020, 168, 112560.	5. 3	22
59	A Ruthenium(II) complex-based probe for colorimetric and luminescent detection and imaging of hydrogen sulfide in living cells and organisms. Analytica Chimica Acta, 2021, 1145, 114-123.	2.6	22
60	Development of a ruthenium(II) complex-based luminescence probe for detection of hydrogen sulfite in food samples. Microchemical Journal, 2018, 141, 181-187.	2.3	21
61	A dual-modal nanoprobe based on Eu(<scp>iii</scp>) complex–MnO ₂ nanosheet nanocomposites for time-gated luminescence–magnetic resonance imaging of glutathione ⟨i⟩in vitro and ⟨i⟩in vivo⟨/i⟩. Nanoscale, 2019, 11, 6784-6793.	2.8	21
62	A lysosome-targeting nanosensor for simultaneous fluorometric imaging of intracellular pH values and temperature. Mikrochimica Acta, 2018, 185, 533.	2.5	20
63	Construction of a multifunctional nanoprobe for tumor-targeted time-gated luminescence and magnetic resonance imaging <i>in vitro</i> and <i>in vivo</i> Nanoscale, 2018, 10, 11597-11603.	2.8	20
64	A "turn-on―Cr ³⁺ ion probe based on non-luminescent metal–organic framework-new strategy to prepare a recovery probe. Journal of Materials Chemistry A, 2021, 9, 13552-13561.	5.2	20
65	Development of a mitochondria targetable ratiometric time-gated luminescence probe for biothiols based on lanthanide complexes. Journal of Materials Chemistry B, 2018, 6, 1844-1851.	2.9	19
66	Time-gated luminescence probe for ratiometric and luminescence lifetime detection of Hypochorous acid in lysosomes of live cells. Talanta, 2020, 212, 120760.	2.9	19
67	Color-Tunable Long-Lived Room-Temperature Phosphorescence in a Coordination Polymer Based on a Nonaromatic Ligand and Its Phosphor/Coordination Polymer-Doped Systems. Chemistry of Materials, 2021, 33, 7272-7282.	3.2	19
68	Smart Bimodal Imaging of Hypochlorous Acid In Vivo Using a Heterobimetallic Ruthenium(II)–Gadolinium(III) Complex Probe. Analytical Chemistry, 2020, 92, 11145-11154.	3.2	17
69	A functional ruthenium(<scp>ii</scp>) complex for imaging biothiols in living bodies. Dalton Transactions, 2015, 44, 8278-8283.	1.6	16
70	Responsive ruthenium complex probe for phosphorescence and time-gated luminescence detection of bisulfite. Dalton Transactions, 2020, 49, 5531-5538.	1.6	14
71	Development of a fluorescein modified ruthenium(II) complex probe for lysosome-targeted ratiometric luminescence detection and imaging of peroxynitrite in living cells. Analytica Chimica Acta, 2022, 1205, 339784.	2.6	14
72	Preparation and functionalization of a visible-light-excited europium complex-modified luminescent protein for cell imaging applications. Analyst, The, 2014, 139, 1162.	1.7	13

#	Article	IF	CITATIONS
73	Development of a novel europium complex-based luminescent probe for time-gated luminescence imaging of hypochlorous acid in living samples. Methods and Applications in Fluorescence, 2017, 5, 014009.	1.1	13
74	Time-gated luminescence imaging of singlet oxygen photoinduced by fluoroquinolones and functionalized graphenes in Daphnia magna. Aquatic Toxicology, 2017, 191, 105-112.	1.9	13
75	Sustainable and Practical Access to Epoxides: Metal-Free Aerobic Epoxidation of Olefins Mediated by Peroxy Radical Generated In Situ. ACS Sustainable Chemistry and Engineering, 2020, 8, 1178-1184.	3.2	12
76	Quantitative Monitoring and Visualization of Hydrogen Sulfide Inâ€Vivo Using a Luminescent Probe Based on a Ruthenium(II) Complex. Angewandte Chemie, 2018, 130, 4063-4068.	1.6	11
77	Tumor-targetable magnetoluminescent silica nanoparticles for bimodal time-gated luminescence/magnetic resonance imaging of cancer cells in vitro and in vivo. Talanta, 2020, 220, 121378.	2.9	11
78	Design and Synthesis of a New Terbium Complex-Based Luminescent Probe for Time-Resolved Luminescence Sensing of Zinc Ions. Journal of Fluorescence, 2014, 24, 1537-1544.	1.3	10
79	Ruthenium(II) complex-based long-lived two-photon luminescence probe for dynamic monitoring of glutathione S-transferases in mouse models of drug-induced liver injury. Sensors and Actuators B: Chemical, 2022, 357, 131440.	4.0	10
80	Synthesis and cell localization of self-assembled dinuclear lanthanide bioprobes. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120295.	1.6	9
81	A multifunctional nanoprobe based on europium(<scp>iii</scp>) complex–Fe ₃ O ₄ nanoparticles for bimodal time-gated luminescence/magnetic resonance imaging of cancer cells <i>iin vitro and <i>iin vivo New Journal of Chemistry, 2022, 46, 9658-9665.</i></i>	1.4	7
82	Development of a Functional Ruthenium(II) Complex that Can Act as a Photoluminescent and Electrochemiluminescent Dual-signaling Probe for Hypochlorous Acid. Journal of Fluorescence, 2015, 25, 997-1004.	1.3	6
83	Cationic Porphyrin-Mediated G-Quadruplex DNA Oxidative Damage: Regulated by the Initial Interplay between DNA and TMPyP4. Biochemistry, 2021, 60, 3707-3713.	1.2	5
84	A novel heterobimetallic Ru(ii)–Gd(iii) complex-based magnetoluminescent agent for MR and luminescence imaging. RSC Advances, 2015, 5, 96525-96531.	1.7	4
85	Development of a tumor-targetable heteropolymetallic lanthanide-complex-based magnetoluminescent probe for dual-modal time-gated luminescence/magnetic resonance imaging of cancer cells <i>in vitro</i> and <i>in vivo</i> . New Journal of Chemistry, 2021, 45, 9181-9188.	1.4	4
86	A folic acid-functionalized dual-emissive nanoprobe for "double-check―luminescence imaging of cancer cells. Methods, 2019, 168, 102-108.	1.9	3
87	Diemissive dye@CP composites with full-spectrum tunable mechanoluminescence. Journal of Materials Chemistry C, 2021, 9, 15165-15174.	2.7	3
88	Bioconjugates of versatile β-diketonate–lanthanide complexes as probes for time-gated luminescence and magnetic resonance imaging of cancer cells ⟨i⟩in vitro⟨i⟩ and ⟨i⟩in vivo⟨i⟩. Journal of Materials Chemistry B, 2021, 9, 3161-3167.	2.9	3
89	Indole-substituted flavonol-based cysteine fluorescence sensing and subsequent precisely controlled linear CO liberation. Analyst, The, 2022, 147, 3360-3369.	1.7	3
90	Lifetime Multiplexing with Lanthanide Complexes for Luminescence <i>In Situ</i> Hybridisation. Analysis & Sensing, 2022, 2, .	1.1	2