
Bisheng Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/65033/publications.pdf Version: 2024-02-01

RISHENC TAN

#	Article	IF	CITATIONS
1	Theoretical Calculation of Cocrystal Components for Explosives: A Similarity Function of Energetic Supramolecules. Crystal Growth and Design, 2022, 22, 293-303.	3.0	2
2	Controllable Sensitivity Mechanism in an Energetic Compound of [FeII(Rtrz)6] as a molecular switch. Chemical Physics Letters, 2022, , 139682.	2.6	1
3	Molecular polarizabilities of some energetic compounds. Journal of Molecular Modeling, 2021, 27, 51.	1.8	1
4	Electrostatic Balance Parameter Mediated Energy Functionsâ€Toward the Stability and Performance of Explosives. Propellants, Explosives, Pyrotechnics, 2021, 46, 1313-1323.	1.6	2
5	Construction strategies for high-nitrogen M8N60 complexes with high detonation heat and controllable stability. Polyhedron, 2021, 209, 115451.	2.2	2
6	Theoretical prediction of decomposition temperature of typical heat-resistant explosives. Chemical Physics Impact, 2020, 1, 100005.	3.5	1
7	Large π-π separation energies of some energetic compounds. Chemical Physics, 2019, 520, 81-87.	1.9	6
8	Building polynitrogen clusters with metal–metal multiple bonds. Polyhedron, 2018, 156, 54-57.	2.2	5
9	Insight into electrostatic initiation of nitramine explosives. Journal of Molecular Modeling, 2017, 23, 10.	1.8	10
10	Two Fox-7-Like High Energy Compounds. ChemistrySelect, 2017, 2, 8738-8744.	1.5	0
11	Nitrogen-Rich Energetic Metal-Organic Framework: Synthesis, Structure, Properties, and Thermal Behaviors of Pb(II) Complex Based on N,N-Bis(1H-tetrazole-5-yl)-Amine. Materials, 2016, 9, 681.	2.9	33
12	Synthesis, Crystal Structure, and Thermal Behavior of 3â€(4â€Aminofurazanâ€3â€yl)â€4â€(4â€nitrofurazanâ€3â€yl)furazan (ANTF). Propellants, Explosives, Pyrotech 906-911.	nics,62016	5, 412,
13	Quantitative correlation between facets defects of RDX crystals and their laser sensitivity. Journal of Hazardous Materials, 2016, 313, 103-111.	12.4	9
14	Scratch defects modulated hot spots generation in laser irradiated RDX crystals: a 3D FDTD simulation. Journal of Materials Science, 2016, 51, 8812-8823.	3.7	4
15	Ultraviolet Laser-induced ignition of RDX single crystal. Scientific Reports, 2016, 6, 20251.	3.3	20
16	Computational assessment of several hydrogen-free high energy compounds. Journal of Molecular Graphics and Modelling, 2016, 63, 85-90.	2.4	5
17	Synthesis and characterization of a new energetic salt 1H-pyrazole-1-carboxamidine dinitramide and its thermal properties. Journal of Thermal Analysis and Calorimetry, 2016, 124, 1431-1439.	3.6	9
18	Synthesis and Characterization of a New Energetic Salt based on Dinitramide. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 2630-2636.	1.2	3

BISHENG TAN

#	Article	IF	CITATIONS
19	From planes to cluster: The design of polynitrogen molecules. International Journal of Quantum Chemistry, 2015, 115, 84-89.	2.0	21
20	Defects-Induced Hot Spots in TATB. Advances in Condensed Matter Physics, 2014, 2014, 1-8.	1.1	1
21	Computational screening of several silicon-based high-energy hexanitrohexaazaisowurtzitane-like derivatives. Journal of Fluorine Chemistry, 2014, 158, 29-37.	1.7	5
22	Insight into a series of cage-like nitrogen oxides. Polyhedron, 2014, 79, 124-128.	2.2	6
23	Theoretical Investigation of Several 1,2,3,4â€Tetrazineâ€Based Highâ€Energy Compounds. Propellants, Explosives, Pyrotechnics, 2013, 38, 372-378.	1.6	35
24	Insight into shock-induced chemical reaction from the perspective of ring strain and rotation of chemical bonds. Journal of Molecular Modeling, 2012, 18, 5127-5132.	1.8	16
25	The cage strain energies of high-energy compounds. Computational and Theoretical Chemistry, 2012, 993, 66-72.	2.5	34
26	An important factor in relation to shock-induced chemistry: resonance energy. Journal of Molecular Modeling, 2012, 18, 583-589.	1.8	11
27	On the Shock Sensitivity of Explosive Compounds with Small-Scale Gap Test. Journal of Physical Chemistry A, 2011, 115, 10610-10616.	2.5	32
28	Two important factors influencing shock sensitivity of nitro compounds: Bond dissociation energy of X–NO2 (X=C, N, O) and Mulliken charges of nitro group. Journal of Hazardous Materials, 2010, 183, 908-912.	12.4	67