
Jordi Robles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6503020/publications.pdf

Version: 2024-02-01

LODDI PORIES

#	Article	IF	CITATIONS
1	Binding thermodynamics of paromomycin, neomycin, neomycinâ€dinucleotide and â€diPNA conjugates to bacterial and human rRNA. Journal of Molecular Recognition, 2016, 29, 142-150.	1.1	3
2	A Straightforward Preparation of Aminoglycoside–Dinucleotide and –diPNA Conjugates via Click Ligation Assisted by Microwaves. European Journal of Organic Chemistry, 2010, 2010, 3102-3109.	1.2	8
3	A singleâ€molecule force spectroscopy nanosensor for the identification of new antibiotics and antimalarials. FASEB Journal, 2010, 24, 4203-4217.	0.2	27
4	Guanine ontaining DNA Minorâ€Groove Binders. European Journal of Organic Chemistry, 2009, 2009, 1398-1406.	1.2	6
5	Novel oligonucleotide analogues containing a morpholinoamidine unit. Tetrahedron, 2009, 65, 1171-1179.	1.0	16
6	Binding Affinities of Oligonucleotides and PNAs Containing Phenoxazine and G-Clamp Cytosine Analogues Are Unusually Sequence-Dependent. Organic Letters, 2007, 9, 4503-4506.	2.4	54
7	4-Guanidino-2-pyrimidinone Nucleobases: Synthesis and Hybridization Properties. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 1085-1087.	0.4	1
8	Synthesis of Amino- and Guanidino-G-Clamp PNA Monomers. Organic Letters, 2002, 4, 4073-4075.	2.4	43
9	Nucleic Acid Triple Helices: Stability Effects of Nucleobase Modifications. Current Organic Chemistry, 2002, 6, 1333-1368.	0.9	59
10	Synthesis of modified oligonucleotides containing 4-guanidino-2-pyrimidinone nucleobases. Tetrahedron, 2001, 57, 179-194.	1.0	25
11	Synthesis and triple helix-forming ability of oligonucleotides with N,N-dimethylaminoethyl phosphoramidate linkages. Tetrahedron Letters, 1999, 40, 7131-7134.	0.7	5
12	Towards nucleopeptides containing any trifunctional amino acid. Tetrahedron, 1999, 55, 13251-13264.	1.0	38
13	The Stepwise Solid-Phase Synthesis Methodology is Suitable for the Preparation of a Great Variety of Nucleopeptides. Nucleosides & Nucleotides, 1999, 18, 1493-1494.	0.5	1
14	Stepwise Solid-Phase Synthesis of Serine-, Tyrosine- and Homoserine-nucleopeptides. Nucleosides & Nucleotides, 1997, 16, 1487-1488.	0.5	4
15	DNA Triplex Stabilization Using a Tethered Minor Groove Binding Hoechst 33258 Analogueâ€. Journal of the American Chemical Society, 1997, 119, 6014-6021.	6.6	35
16	Synthesis and Enzymatic Stability of Phosphodiester-Linked Peptideâ^'Oligonucleotide Hybrids. Bioconjugate Chemistry, 1997, 8, 785-788.	1.8	37
17	Hoechst 33258 Tethered by a Hexa(ethylene glycol) Linker to the 5â€~-Termini of Oligodeoxynucleotide 15-Mers:Â Duplex Stabilization and Fluorescence Properties. Journal of Organic Chemistry, 1997, 62, 523-529.	1.7	52
18	Homoserine derivatives for the preparation of base-stable nucleopeptide analogues. International Journal of Peptide Research and Therapeutics, 1997, 4, 147-155.	0.1	5

Jordi Robles

#	Article	IF	CITATIONS
19	A Parallel-Stranded DNA Triplex Tethering a Hoechst 33258 Analogue Results in Complex Stabilization by Simultaneous Major Groove and Minor Groove Binding. Journal of the American Chemical Society, 1996, 118, 5820-5821.	6.6	29
20	Solid-phase synthesis of a nucleopeptide from the linking site of adenovirus-2 nucleoprotein, -Ser(p5′CATCAT)-Gly-Asp Convergent versus stepwise strategy. Nucleic Acids Research, 1995, 23, 4151-4161.	6.5	33
21	Peptide-Oligonucleotide Hybrids with N-Acylphosphoramidate Linkages. Journal of Organic Chemistry, 1995, 60, 4856-4861.	1.7	15
22	Phosphitylation of Primary Carboxamides. Synthesis of Peptide-Oligonucleotide Conjugates with Acylphosphoramidate Linkages. Nucleosides, Nucleotides and Nucleic Acids, 1995, 14, 825-828.	0.4	9
23	Stepwise solid-phase synthesis of nucleopeptide Phac-Ser(p5′CATCAT)-Gly-Asp-OH from adenovirus-2 nucleoprotein. Tetrahedron Letters, 1994, 35, 4449-4452.	0.7	13
24	Stepwise Solid-Phase Synthesis of the Nucleopeptide Phac-Phe-Val-Ser(p3'ACT)-Gly-OH. Journal of Organic Chemistry, 1994, 59, 2482-2486.	1.7	37
25	Preparation of an aspartic acidâ€containing protected peptide. International Journal of Peptide and Protein Research, 1994, 43, 359-362.	0.1	3
26	Synthesis of serine-phosphitylated peptides and peptide-oligonucleotide conjugates. , 1993, , 336-337.		0
27	A synthetic procedure for the preparation of oligonucleotides without using ammonia and its application for the synthesis of oligonucleotides containing 0-4-alkyl thymidines Tetrahedron, 1992, 48, 4171-4182.	1.0	36
28	NPE-resin, a new approach to the solid-phase synthesis of protected peptides and oligonucleotides I : Synthesis of the supports and their application to oligonucleotide synthesis Tetrahedron Letters, 1991, 32, 1511-1514.	0.7	42
29	Solid phase synthesis of a model nucleopeptide with a phosphodiester bond between the 5′ end of a tripucleotide and a serine residue. Tetrabedron Letters, 1991, 32, 4389,4392	0.7	20