
Konrad Urbanek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/650302/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Current and future therapeutic perspective in chronic heart failure. Pharmacological Research, 2022, 175, 106035.	3.1	31
2	Diabetes-Induced Cellular Senescence and Senescence-Associated Secretory Phenotype Impair Cardiac Regeneration and Function Independently of Age. Diabetes, 2022, 71, 1081-1098.	0.3	30
3	Deficit of glucocorticoidâ€induced leucine zipper amplifies angiotensinâ€induced cardiomyocyte hypertrophy and diastolic dysfunction. Journal of Cellular and Molecular Medicine, 2021, 25, 217-228.	1.6	7
4	The Role of Renin-Angiotensin-Aldosterone System in the Heart and Lung: Focus on COVID-19. Frontiers in Pharmacology, 2021, 12, 667254.	1.6	39
5	Physical Exercise and Cardiac Repair: The Potential Role of Nitric Oxide in Boosting Stem Cell Regenerative Biology. Antioxidants, 2021, 10, 1002.	2.2	19
6	In vitro CSC-derived cardiomyocytes exhibit the typical microRNA-mRNA blueprint of endogenous cardiomyocytes. Communications Biology, 2021, 4, 1146.	2.0	15
7	From Spheroids to Organoids: The Next Generation of Model Systems of Human Cardiac Regeneration in a Dish. International Journal of Molecular Sciences, 2021, 22, 13180.	1.8	27
8	Angiotensin II and angiotensin 1–7: which is their role in atrial fibrillation?. Heart Failure Reviews, 2020, 25, 367-380.	1.7	37
9	Cardioprotective effects of miR-34a silencing in a rat model of doxorubicin toxicity. Scientific Reports, 2020, 10, 12250.	1.6	25
10	Statins Stimulate New Myocyte Formation After Myocardial Infarction by Activating Growth and Differentiation of the Endogenous Cardiac Stem Cells. International Journal of Molecular Sciences, 2020, 21, 7927.	1.8	27
11	Amelioration of diastolic dysfunction by dapagliflozin in a non-diabetic model involves coronary endothelium. Pharmacological Research, 2020, 157, 104781.	3.1	74
12	Unravelling the Biology of Adult Cardiac Stem Cell-Derived Exosomes to Foster Endogenous Cardiac Regeneration and Repair. International Journal of Molecular Sciences, 2020, 21, 3725.	1.8	26
13	Targeting Cardiac Stem Cell Senescence to Treat Cardiac Aging and Disease. Cells, 2020, 9, 1558.	1.8	75
14	Atrial myxomas arise from multipotent cardiac stem cells. European Heart Journal, 2020, 41, 4332-4345.	1.0	51
15	Adult Cardiac Stem Cell Aging: A Reversible Stochastic Phenomenon?. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-19.	1.9	31
16	Dipeptidyl Peptidase 4 Inhibition Ameliorates Chronic Kidney Disease in a Model of Salt-Dependent Hypertension. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-13.	1.9	18
17	Chronic exposure to low dose of bisphenol A impacts on the first round of spermatogenesis via SIRT1 modulation. Scientific Reports, 2018, 8, 2961.	1.6	61
18	Kitcre knock-in mice fail to fate-map cardiac stem cells. Nature, 2018, 555, E1-E5.	13.7	79

Konrad Urbanek

#	Article	IF	CITATIONS
19	Doxorubicin targets multiple players: A new view of an old problem. Pharmacological Research, 2018, 127, 4-14.	3.1	123
20	Low PD-1 Expression in Cytotoxic CD8+ Tumor-Infiltrating Lymphocytes Confers an Immune-Privileged Tissue Microenvironment in NSCLC with a Prognostic and Predictive Value. Clinical Cancer Research, 2018, 24, 407-419.	3.2	203
21	Imatinib mesylate-induced cardiomyopathy involves resident cardiac progenitors. Pharmacological Research, 2018, 127, 15-25.	3.1	14
22	Doxorubicin Cardiotoxicity: Multiple Targets and Translational Perspectives. , 2018, , .		3
23	Lung Mesenchymal Stem Cells Ameliorate Elastase-Induced Damage in an Animal Model of Emphysema. Stem Cells International, 2018, 2018, 1-10.	1.2	16
24	Human cardiac progenitor cells with regenerative potential can be isolated and characterized from 3D-electro-anatomic guided endomyocardial biopsies. International Journal of Cardiology, 2017, 241, 330-343.	0.8	6
25	Effects of ranolazine in a model of doxorubicinâ€induced left ventricle diastolic dysfunction. British Journal of Pharmacology, 2017, 174, 3696-3712.	2.7	73
26	Sitagliptin reduces inflammation, fibrosis and preserves diastolic function in a rat model of heart failure with preserved ejection fraction. British Journal of Pharmacology, 2017, 174, 4070-4086.	2.7	58
27	Oxidative Stress and Cellular Response to Doxorubicin: A Common Factor in the Complex Milieu of Anthracycline Cardiotoxicity. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-13.	1.9	255
28	New Role of Adult Lung c-kit+ Cells in a Mouse Model of Airway Hyperresponsiveness. Mediators of Inflammation, 2016, 2016, 1-13.	1.4	8
29	Intratracheal Administration of Mesenchymal Stem Cells Modulates Tachykinin System, Suppresses Airway Remodeling and Reduces Airway Hyperresponsiveness in an Animal Model. PLoS ONE, 2016, 11, e0158746.	1.1	36
30	Antiarrhythmic effect of growth factor-supplemented cardiac progenitor cells in chronic infarcted heart. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H1622-H1648.	1.5	23
31	Long-term administration of ranolazine attenuates diastolic dysfunction and adverse myocardial remodeling in a model of heart failure with preserved ejection fraction. International Journal of Cardiology, 2016, 217, 69-79.	0.8	32
32	Nociceptin/orphanin FQ (N/OFQ) modulates immunopathology and airway hyperresponsiveness representing a novel target for the treatment of asthma. British Journal of Pharmacology, 2016, 173, 1286-1301.	2.7	25
33	Doxorubicin cardiotoxicity and target cells: a broader perspective. Cardio-Oncology, 2016, 2, 2.	0.8	48
34	Role of adiponectin in sphingosine-1-phosphate induced airway hyperresponsiveness and inflammation. Pharmacological Research, 2016, 103, 114-122.	3.1	8
35	SIRT1 activation attenuates diastolic dysfunction by reducing cardiac fibrosis in a model of anthracycline cardiomyopathy. International Journal of Cardiology, 2016, 205, 99-110.	0.8	114
36	MicroRNA-34a regulates doxorubicin-induced cardiotoxicity in rat. Oncotarget, 2016, 7, 62312-62326.	0.8	61

Konrad Urbanek

#	Article	IF	CITATIONS
37	Effect of Prolonged Moderate Exercise on the Changes of Nonneuronal Cells in Early Myocardial Infarction. Neural Plasticity, 2015, 2015, 1-8.	1.0	27
38	SIRT1 activation rescues doxorubicin-induced loss of functional competence of human cardiac progenitor cells. International Journal of Cardiology, 2015, 189, 30-44.	0.8	65
39	Titanium dioxide nanoparticles promote arrhythmias via a direct interaction with rat cardiac tissue. Particle and Fibre Toxicology, 2014, 11, 63.	2.8	76
40	Doxorubicin induces senescence and impairs function of human cardiac progenitor cells. Basic Research in Cardiology, 2013, 108, 334.	2.5	122
41	Anthracycline Cardiomyopathy Is Mediated by Depletion of the Cardiac Stem Cell Pool and Is Rescued by Restoration of Progenitor Cell Function. Circulation, 2010, 121, 276-292.	1.6	239
42	Activation of Cardiac Progenitor Cells Reverses the Failing Heart Senescent Phenotype and Prolongs Lifespan. Circulation Research, 2008, 102, 597-606.	2.0	178
43	Human cardiac stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14068-14073.	3.3	925
44	Stem cell niches in the adult mouse heart. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9226-9231.	3.3	423
45	Diabetes Promotes Cardiac Stem Cell Aging and Heart Failure, Which Are Prevented by Deletion of the p66 shc Gene. Circulation Research, 2006, 99, 42-52.	2.0	327
46	Cardiac Stem Cells Possess Growth Factor-Receptor Systems That After Activation Regenerate the Infarcted Myocardium, Improving Ventricular Function and Long-Term Survival. Circulation Research, 2005, 97, 663-673.	2.0	494
47	Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8692-8697.	3.3	587
48	Immunohistologic Identification and Quantification of Human Bone Marrow Hematopoietic Stem Cells Blood, 2005, 106, 2301-2301.	0.6	0
49	Cardiac Stem Cell and Myocyte Aging, Heart Failure, and Insulin-Like Growth Factor-1 Overexpression. Circulation Research, 2004, 94, 514-524.	2.0	527
50	Adult Cardiac Stem Cells Are Multipotent and Support Myocardial Regeneration. Cell, 2003, 114, 763-776.	13.5	3,268
51	Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10440-10445.	3.3	462
52	Senescence and Death of Primitive Cells and Myocytes Lead to Premature Cardiac Aging and Heart Failure. Circulation Research, 2003, 93, 604-613.	2.0	363