
Cai-Hong Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6502755/publications.pdf Version: 2024-02-01

CAL-HONG LUL

#	Article	IF	CITATIONS
1	Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nanotechnology, 2009, 20, 185504.	1.3	913
2	Silver nanowire-based transparent, flexible, and conductive thin film. Nanoscale Research Letters, 2011, 6, 75.	3.1	439
3	The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials. Solar Energy Materials and Solar Cells, 2011, 95, 1208-1212.	3.0	338
4	Li ₂ S encapsulated by nitrogen-doped carbon for lithium sulfur batteries. Journal of Materials Chemistry A, 2014, 2, 18026-18032.	5.2	90
5	Robust 3-D configurated metal oxide nano-array based monolithic catalysts with ultrahigh materials usage efficiency and catalytic performance tunability. Nano Energy, 2013, 2, 873-881.	8.2	76
6	Structure dependent interaction between organic dyes and carbon nanotubes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 313-314, 9-12.	2.3	73
7	Nonprecious catalytic honeycombs structured with three dimensional hierarchical Co3O4 nano-arrays for high performance nitric oxide oxidation. Journal of Materials Chemistry A, 2013, 1, 9897.	5.2	73
8	Hierarchically nanostructured materials for sustainable environmental applications. Frontiers in Chemistry, 2013, 1, 18.	1.8	62
9	Na3MnCO3PO4 – A High Capacity, Multi-Electron Transfer Redox Cathode Material for Sodium Ion Batteries. Electrochimica Acta, 2015, 161, 322-328.	2.6	62
10	PVP-Assisted Synthesis of Uniform Carbon Coated Li ₂ S/CB for High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2015, 7, 25748-25756.	4.0	56
11	Chemical approaches towards single-species single-walled carbon nanotubes. Nanoscale, 2010, 2, 1901.	2.8	41
12	Highly efficient visible-light driven photocatalysts: a case of zinc stannate based nanocrystal assemblies. Journal of Materials Chemistry A, 2014, 2, 4157-4167.	5.2	40
13	Hierarchical Assembly of Multifunctional Oxide-based Composite Nanostructures for Energy and Environmental Applications. International Journal of Molecular Sciences, 2012, 13, 7393-7423.	1.8	37
14	Tunable UV response and high performance of zinc stannate nanoparticle film photodetectors. Journal of Materials Chemistry C, 2016, 4, 6176-6184.	2.7	32
15	Shell-Controlled Photoluminescence in CdSe/CNT Nanohybrids. Nanoscale Research Letters, 2009, 4, 1146-52.	3.1	30
16	Controlled synthesis and structure tunability of photocatalytically active mesoporous metal-based stannate nanostructures. Applied Surface Science, 2014, 296, 53-60.	3.1	24
17	Tandem extraction strategy for separation of metallic and semiconducting SWCNTs using condensed benzenoid molecules: effects of molecular morphology and solvent. Physical Chemistry Chemical Physics, 2009, 11, 7257.	1.3	18
18	An Ambient Temperature Molten Sodium–Vanadium Battery with Aqueous Flowing Catholyte. ACS Applied Materials & Interfaces, 2016, 8, 1545-1552.	4.0	17

CAI-HONG LIU

#	Article	IF	CITATIONS
19	Room Temperature, Hybrid Sodium-Based Flow Batteries with Multi-Electron Transfer Redox Reactions. Scientific Reports, 2015, 5, 11215.	1.6	16
20	In situ TPR removal: a generic method for fabricating tubular array devices with mechanical and structural soundness, and functional robustness on various substrates. Journal of Materials Chemistry, 2012, 22, 23098.	6.7	14
21	New Mechanism for the Reduction of Vanadyl Acetylacetonate to Vanadium Acetylacetonate for Room Temperature Flow Batteries. ChemSusChem, 2017, 10, 533-540.	3.6	12
22	Microencapsulation of Biobased Phase Change Material by Interfacial Polycondensation for Thermal Energy Storage Applications. Journal of Biobased Materials and Bioenergy, 2013, 7, 331-335.	0.1	10
23	Li ₃ BN ₂ as a Transition Metal Free, High Capacity Cathode for Liâ€ion Batteries. ChemElectroChem, 2019, 6, 320-325.	1.7	9
24	Selective interaction of a soluble pentacene derivative with metallic single-walled carbon nanotubes. Chemical Physics Letters, 2009, 471, 97-102.	1.2	7
25	FIRST PRINCIPLES STUDY OF CYTOSINE ADSORPTION ON GRAPHENE. International Journal of Nanoscience, 2009, 08, 5-8.	0.4	5
26	A High Capacity, Room Temperature, Hybrid Flow Battery Consisting of Liquid Na-Cs Anode and Aqueous Nal Catholyte. Batteries, 2018, 4, 60.	2.1	5
27	Dye Assisted Separation of Single Wall Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2009, 9, 1254-1257.	0.9	3
28	Nanoparticulate Materials and Core/Shell Structures Derived from Wet Chemistry Methods. , 2015, , 1-21.		3
29	Synthesis and Thermal Degradation of Fire-Retardant Zinc Hydroxystannate Nanocube Coated Textiles. Science of Advanced Materials, 2012, 4, 819-824.	0.1	2
30	Nanoparticulate Materials and Core/Shell Structures Derived from Wet Chemistry Methods. , 2016, , 2579-2597.		0