
Alexis Peaucelle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6502634/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pectin-Induced Changes in Cell Wall Mechanics Underlie Organ Initiation in Arabidopsis. Current Biology, 2011, 21, 1720-1726.	3.9	550
2	The FERONIA Receptor Kinase Maintains Cell-Wall Integrity during Salt Stress through Ca2+ Signaling. Current Biology, 2018, 28, 666-675.e5.	3.9	526
3	Mechanical Stress Acts via Katanin to Amplify Differences in Growth Rate between Adjacent Cells in Arabidopsis. Cell, 2012, 149, 439-451.	28.9	418
4	Arabidopsis Phyllotaxis Is Controlled by the Methyl-Esterification Status of Cell-Wall Pectins. Current Biology, 2008, 18, 1943-1948.	3.9	302
5	The Control of Growth Symmetry Breaking in the Arabidopsis Hypocotyl. Current Biology, 2015, 25, 1746-1752.	3.9	252
6	Mechano-Chemical Aspects of Organ Formation in Arabidopsis thaliana: The Relationship between Auxin and Pectin. PLoS ONE, 2013, 8, e57813.	2.5	243
7	Pectin homogalacturonan nanofilament expansion drives morphogenesis in plant epidermal cells. Science, 2020, 367, 1003-1007.	12.6	209
8	The role of pectin phase separation in plant cell wall assembly and growth. Cell Surface, 2021, 7, 100054.	3.0	56
9	AFM-based Mapping of the Elastic Properties of Cell Walls: at Tissue, Cellular, and Subcellular Resolutions. Journal of Visualized Experiments, 2014, , .	0.3	35
10	KymoRod: a method for automated kinematic analysis of rodâ€shaped plant organs. Plant Journal, 2016, 88, 468-475.	5.7	33
11	Multicolor 3D-dSTORM Reveals Native-State Ultrastructure of Polysaccharides' Network during Plant Cell Wall Assembly. IScience, 2020, 23, 101862.	4.1	12
12	Multitarget Immunohistochemistry for Confocal and Super-resolution Imaging of Plant Cell Wall Polysaccharides. Bio-protocol, 2020, 10, e3783.	0.4	12
13	The hook shape of growing leaves results from an active regulatory process. Journal of Experimental Botany, 2020, 71, 6408-6417.	4.8	7
14	Cell Wall Expansion: Case Study of a Biomechanical Process. Plant Cell Monographs, 2018, , 139-154.	0.4	3
15	From monocots to dicots: the multifold aspect of cell wall expansion. Journal of Experimental Botany, 2021, 72, 1511-1513.	4.8	2
16	Protocol for multicolor three-dimensional dSTORM data analysis using MATLAB-based script package Grafeo. STAR Protocols, 2021, 2, 100808.	1.2	2