Ralph A Defronzo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6502131/publications.pdf

Version: 2024-02-01

147 papers

26,945 citations

63 h-index 139 g-index

228 all docs

228 docs citations

times ranked

228

24819 citing authors

#	Article	IF	Citations
1	Insulin Resistance: A Multifaceted Syndrome Responsible for NIDDM, Obesity, Hypertension, Dyslipidemia, and Atherosclerotic Cardiovascular Disease. Diabetes Care, 1991, 14, 173-194.	4.3	3,723
2	From the Triumvirate to the Ominous Octet: A New Paradigm for the Treatment of Type 2 Diabetes Mellitus. Diabetes, 2009, 58, 773-795.	0.3	2,251
3	A Placebo-Controlled Trial of Pioglitazone in Subjects with Nonalcoholic Steatohepatitis. New England Journal of Medicine, 2006, 355, 2297-2307.	13.9	1,584
4	Type 2 diabetes mellitus. Nature Reviews Disease Primers, 2015, 1, 15019.	18.1	1,308
5	Efficacy of Metformin in Patients with Non-Insulin-Dependent Diabetes Mellitus. New England Journal of Medicine, 1995, 333, 541-549.	13.9	1,213
6	Quantitation of Muscle Glycogen Synthesis in Normal Subjects and Subjects with Non-Insulin-Dependent Diabetes by ¹³ C Nuclear Magnetic Resonance Spectroscopy. New England Journal of Medicine, 1990, 322, 223-228.	13.9	1,181
7	The genetic architecture of type 2 diabetes. Nature, 2016, 536, 41-47.	13.7	952
8	Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production. Journal of Clinical Investigation, 2014, 124, 509-514.	3.9	661
9	Pioglitazone for Diabetes Prevention in Impaired Glucose Tolerance. New England Journal of Medicine, 2011, 364, 1104-1115.	13.9	646
10	Relationship Between Hepatic/Visceral Fat and Hepatic Insulin Resistance in Nondiabetic and Type 2 Diabetic Subjects. Gastroenterology, 2007, 133, 496-506.	0.6	500
11	Fasting hyperglycemia in non-insulin-dependent diabetes mellitus: Contributions of excessive hepatic glucose production and impaired tissue glucose uptake. Metabolism: Clinical and Experimental, 1989, 38, 387-395.	1.5	492
12	Epinephrine-induced Insulin Resistance in Man. Journal of Clinical Investigation, 1980, 65, 717-721.	3.9	480
13	β-Cell Function in Subjects Spanning the Range from Normal Glucose Tolerance to Overt Diabetes: A New Analysis. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 493-500.	1.8	470
14	A Sustained Increase in Plasma Free Fatty Acids Impairs Insulin Secretion in Nondiabetic Subjects Genetically Predisposed to Develop Type 2 Diabetes. Diabetes, 2003, 52, 2461-2474.	0.3	447
15	Pathogenesis of Insulin Resistance in Skeletal Muscle. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-19.	3.0	441
16	Insulin Secretion and Action in Subjects With Impaired Fasting Glucose and Impaired Glucose Tolerance: Results From the Veterans Administration Genetic Epidemiology Study. Diabetes, 2006, 55, 1430-1435.	0.3	429
17	Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. Nature Reviews Nephrology, 2017, 13, 11-26.	4.1	398
18	Contributions of Â-Cell Dysfunction and Insulin Resistance to the Pathogenesis of Impaired Glucose Tolerance and Impaired Fasting Glucose. Diabetes Care, 2006, 29, 1130-1139.	4.3	382

#	Article	IF	Citations
19	Mechanism of Metformin Action in Obese and Lean Noninsulin-Dependent Diabetic Subjects*. Journal of Clinical Endocrinology and Metabolism, 1991, 73, 1294-1301.	1.8	363
20	Consensus Statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the Comprehensive type 2 Diabetes Management Algorithm – 2017 Executive Summary. Endocrine Practice, 2017, 23, 207-238.	1.1	362
21	Role of Sodium-Glucose Cotransporter 2 (SGLT 2) Inhibitors in the Treatment of Type 2 Diabetes. Endocrine Reviews, 2011, 32, 515-531.	8.9	344
22	Effects of exenatide versus sitagliptin on postprandial glucose, insulin and glucagon secretion, gastric emptying, and caloric intake: a randomized, cross-over study. Current Medical Research and Opinion, 2008, 24, 2943-2952.	0.9	341
23	What Is the Best Predictor of Future Type 2 Diabetes?. Diabetes Care, 2007, 30, 1544-1548.	4.3	310
24	The disposal of an oral glucose load in patients with non-insulin-dependent diabetes. Metabolism: Clinical and Experimental, 1988, 37, 79-85.	1.5	268
25	Exome sequencing of 20,791Âcases of type 2 diabetes and 24,440Âcontrols. Nature, 2019, 570, 71-76.	13.7	248
26	SGLT2 Inhibitors and Cardiovascular Risk: Lessons Learned From the EMPA-REG OUTCOME Study. Diabetes Care, 2016, 39, 717-725.	4.3	244
27	Pathophysiology of diabetic kidney disease: impact of SGLT2 inhibitors. Nature Reviews Nephrology, 2021, 17, 319-334.	4.1	244
28	Combination of Empagliflozin and Linagliptin as Second-Line Therapy in Subjects With Type 2 Diabetes Inadequately Controlled on Metformin. Diabetes Care, 2015, 38, 384-393.	4.3	241
29	The Primary Glucose-Lowering Effect of Metformin Resides in the Gut, Not the Circulation: Results From Short-term Pharmacokinetic and 12-Week Dose-Ranging Studies. Diabetes Care, 2016, 39, 198-205.	4.3	240
30	Role of Adipose Tissue Insulin Resistance in the Natural History of Type 2 Diabetes: Results From the San Antonio Metabolism Study. Diabetes, 2017, 66, 815-822.	0.3	234
31	Characterization of Renal Glucose Reabsorption in Response to Dapagliflozin in Healthy Subjects and Subjects With Type 2 Diabetes. Diabetes Care, 2013, 36, 3169-3176.	4.3	233
32	The Dipeptidyl Peptidase IV Inhibitor Vildagliptin Suppresses Endogenous Glucose Production and Enhances Islet Function after Single-Dose Administration in Type 2 Diabetic Patients. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 1249-1255.	1.8	219
33	Insulin Resistance and Atherosclerosis: Implications for Insulin-Sensitizing Agents. Endocrine Reviews, 2019, 40, 1447-1467.	8.9	210
34	Novel Hypothesis to Explain Why SGLT2 Inhibitors Inhibit Only 30–50% of Filtered Glucose Load in Humans. Diabetes, 2013, 62, 3324-3328.	0.3	198
35	Effect of Strict Glycemic Control on Renal Hemodynamic Response to Amino Acids and Renal Enlargement in Insulin-Dependent Diabetes Mellitus. New England Journal of Medicine, 1991, 324, 1626-1632.	13.9	195
36	Thiazolidinediones improve \hat{l}^2 -cell function in type 2 diabetic patients. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E871-E883.	1.8	167

3

#	Article	lF	CITATIONS
37	Effect of a Sustained Reduction in Plasma Free Fatty Acid Concentration on Intramuscular Long-Chain Fatty Acyl-CoAs and Insulin Action in Type 2 Diabetic Patients. Diabetes, 2005, 54, 3148-3153.	0.3	162
38	Pioglitazone: The forgotten, cost-effective cardioprotective drug for type 2 diabetes. Diabetes and Vascular Disease Research, 2019, 16, 133-143.	0.9	155
39	Pancreatic islet amyloidosis, \hat{i}^2 -cell apoptosis, and \hat{i}^2 -cell proliferation are determinants of islet remodeling in type-2 diabetic baboons. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13992-13997.	3.3	147
40	Mechanism of action of exenatide to reduce postprandial hyperglycemia in type 2 diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E846-E852.	1.8	144
41	Regulation of hepatic glucose metabolism in humans. Diabetes/metabolism Reviews, 1987, 3, 415-459.	0.4	139
42	Dapagliflozin Lowers Plasma Glucose Concentration and Improves \hat{l}^2 -Cell Function. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 1927-1932.	1.8	133
43	Rosiglitazone Improves Downstream Insulin Receptor Signaling in Type 2 Diabetic Patients. Diabetes, 2003, 52, 1943-1950.	0.3	128
44	Combination therapy with <scp>GLP</scp> â€l receptor agonist and <scp>SGLT2</scp> inhibitor. Diabetes, Obesity and Metabolism, 2017, 19, 1353-1362.	2.2	120
45	The role of fractional glucose extraction in the regulation of splanchnic glucose metabolism in normal and diabetic man. Metabolism: Clinical and Experimental, 1980, 29, 28-35.	1.5	117
46	Metabolic basis of obesity and noninsulinâ€dependent diabetes mellitus. Diabetes/metabolism Reviews, 1988, 4, 727-747.	0.4	117
47	Renal sodium-glucose cotransporter inhibition in the management of type 2 diabetes mellitus. American Journal of Physiology - Renal Physiology, 2015, 309, F889-F900.	1.3	113
48	Cardiovascular Disease and Type 2 Diabetes: Has the Dawn of a New Era Arrived?. Diabetes Care, 2017, 40, 813-820.	4.3	109
49	APPL1 Potentiates Insulin Sensitivity by Facilitating the Binding of IRS1/2 to the Insulin Receptor. Cell Reports, 2014, 7, 1227-1238.	2.9	107
50	Effects of Exenatide Plus Rosiglitazone on \hat{I}^2 -Cell Function and Insulin Sensitivity in Subjects With Type 2 Diabetes on Metformin. Diabetes Care, 2010, 33, 951-957.	4.3	100
51	Pioglitazone Slows Progression of Atherosclerosis in Prediabetes Independent of Changes in Cardiovascular Risk Factors. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 393-399.	1.1	97
52	Distinct Â-Cell Defects in Impaired Fasting Glucose and Impaired Glucose Tolerance. Diabetes, 2012, 61, 447-453.	0.3	96
53	Once-daily delayed-release metformin lowers plasma glucose and enhances fasting and postprandial GLP-1 and PYY: results from two randomised trials. Diabetologia, 2016, 59, 1645-1654.	2.9	95
54	In Vivo Actions of Peroxisome Proliferator–Activated Receptors. Diabetes Care, 2013, 36, S162-S174.	4.3	94

#	Article	IF	CITATIONS
55	Sensitivity of insulin secretion to feedback inhibition by hyperinsulinaemia. European Journal of Endocrinology, 1981, 98, 81-86.	1.9	88
56	Prevention of Diabetes With Pioglitazone in ACT NOW. Diabetes, 2013, 62, 3920-3926.	0.3	83
57	Exenatide improves both hepatic and adipose tissue insulin resistance: A dynamic positron emission tomography study. Hepatology, 2016, 64, 2028-2037.	3.6	78
58	Insulin: The master regulator of glucose metabolism. Metabolism: Clinical and Experimental, 2022, 129, 155142.	1.5	78
59	Glucagon dose-response curve for hepatic glucose production and glucose disposal in type 2 diabetic patients and normal individuals. Metabolism: Clinical and Experimental, 2002, 51, 1111-1119.	1.5	76
60	Physiological and Molecular Determinants of Insulin Action in the Baboon. Diabetes, 2008, 57, 899-908.	0.3	75
61	Effects of Pioglitazone on Intramyocellular Fat Metabolism in Patients with Type 2 Diabetes Mellitus. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 1916-1923.	1.8	72
62	Measurement of abdominal fat with T1-weighted MR images. Journal of Magnetic Resonance Imaging, 1991, 1, 363-369.	1.9	67
63	Empagliflozin and Kinetics of Renal Glucose Transport in Healthy Individuals and Individuals With Type 2 Diabetes. Diabetes, 2017, 66, 1999-2006.	0.3	67
64	Nox2 Mediates Skeletal Muscle Insulin Resistance Induced by a High Fat Diet. Journal of Biological Chemistry, 2015, 290, 13427-13439.	1.6	63
65	Determinants of the increase in ketone concentration during <scp>SGLT2</scp> inhibition in <scp>NGT</scp> , <scp>IFG</scp> and <scp>T2DM</scp> patients. Diabetes, Obesity and Metabolism, 2017, 19, 809-813.	2.2	61
66	Influence of hyperinsulinaemia on intracellular amino acid levels and amino acid exchange across splanchnic and leg tissues in uraemia. Clinical Science, 1988, 74, 155-163.	1.8	57
67	Impaired early- but not late-phase insulin secretion in subjects with impaired fasting glucose. Acta Diabetologica, 2011, 48, 209-217.	1.2	55
68	Mechanisms of Glucose Lowering of Dipeptidyl Peptidase-4 Inhibitor Sitagliptin When Used Alone or With Metformin in Type 2 Diabetes. Diabetes Care, 2013, 36, 2756-2762.	4.3	52
69	A Loss-of-Function Splice Acceptor Variant in <i>IGF2</i> Is Protective for Type 2 Diabetes. Diabetes, 2017, 66, 2903-2914.	0.3	52
70	Determinants of penetrance and variable expressivity in monogenic metabolic conditions across 77,184 exomes. Nature Communications, 2021, 12, 3505.	5.8	49
71	Adaptation of Insulin Clearance to Metabolic Demand Is a Key Determinant of Glucose Tolerance. Diabetes, 2021, 70, 377-385.	0.3	47
72	Effect of insulin and plasma amino acid concentration on leucine metabolism in cirrhosis. Hepatology, 1991, 14, 432-441.	3.6	46

#	Article	IF	Citations
73	Role of Glycated Hemoglobin in the Prediction of Future Risk of T2DM. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 2596-2600.	1.8	45
74	Pioglitazone Improves Left Ventricular Diastolic Function in Subjects With Diabetes. Diabetes Care, 2017, 40, 1530-1536.	4.3	45
75	Endogenous Glucose Production and Hormonal Changes in Response to Canagliflozin and Liraglutide Combination Therapy. Diabetes, 2018, 67, 1182-1189.	0.3	44
76	Is It Time to Change the Type 2 Diabetes Treatment Paradigm? Yes! GLP-1 RAs Should Replace Metformin in the Type 2 Diabetes Algorithm. Diabetes Care, 2017, 40, 1121-1127.	4.3	43
77	Therapeutic Manipulation of Myocardial Metabolism. Journal of the American College of Cardiology, 2021, 77, 2022-2039.	1.2	40
78	Insulin Resistance the Link between T2DM and CVD: Basic Mechanisms and Clinical Implications. Current Vascular Pharmacology, 2019, 17, 153-163.	0.8	39
79	Transcriptomics in type 2 diabetes: Bridging the gap between genotype and phenotype. Genomics Data, 2016, 8, 25-36.	1.3	37
80	Transcriptomic Identification of ADH1B as a Novel Candidate Gene for Obesity and Insulin Resistance in Human Adipose Tissue in Mexican Americans from the Veterans Administration Genetic Epidemiology Study (VAGES). PLoS ONE, 2015, 10, e0119941.	1.1	35
81	Predictive models of insulin resistance derived from simple morphometric and biochemical indices related to obesity and the metabolic syndrome in baboons. Cardiovascular Diabetology, 2009, 8, 22.	2.7	34
82	Successful \hat{l}^2 cells islet regeneration in streptozotocin-induced diabetic baboons using ultrasound-targeted microbubble gene therapy with cyclinD2/CDK4/GLP1. Cell Cycle, 2014, 13, 1145-1151.	1.3	34
83	The Disposition Index Does Not Reflect \hat{l}^2 -Cell Function in IGT Subjects Treated With Pioglitazone. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 3774-3781.	1.8	34
84	Combination Therapy With Exenatide Plus Pioglitazone Versus Basal/Bolus Insulin in Patients With Poorly Controlled Type 2 Diabetes on Sulfonylurea Plus Metformin: The Qatar Study. Diabetes Care, 2017, 40, 325-331.	4.3	32
85	Reciprocal Variations in Insulin-Stimulated Glucose Uptake and Pancreatic Insulin Secretion in Women With Normal Glucose Tolerance. Journal of the Society for Gynecologic Investigation, 1995, 2, 708-715.	1.9	31
86	Sequence data and association statistics from 12,940 type 2 diabetes cases and controls. Scientific Data, 2017, 4, 170179.	2.4	31
87	Decreased Non–Insulin-Dependent Glucose Clearance Contributes to the Rise in Fasting Plasma Glucose in the Nondiabetic Range. Diabetes Care, 2008, 31, 311-315.	4.3	30
88	Combination Therapy With Canagliflozin Plus Liraglutide Exerts Additive Effect on Weight Loss, but Not on HbA1c, in Patients With Type 2 Diabetes. Diabetes Care, 2020, 43, 1234-1241.	4.3	30
89	Durability of Triple Combination Therapy Versus Stepwise Addition Therapy in Patients With New-Onset T2DM: 3-Year Follow-up of EDICT. Diabetes Care, 2021, 44, 433-439.	4.3	29
90	Effect of Chronic Hyperglycemia on Glucose Metabolism in Subjects With Normal Glucose Tolerance. Diabetes, 2018, 67, 2507-2517.	0.3	26

#	Article	IF	CITATIONS
91	Accuracy of 1-Hour Plasma Glucose During the Oral Glucose Tolerance Test in Diagnosis of Type 2 Diabetes in Adults: A Meta-analysis. Diabetes Care, 2021, 44, 1062-1069.	4.3	25
92	Rare coding variants in 35 genes associate with circulating lipid levelsâ€"A multi-ancestry analysis of 170,000 exomes. American Journal of Human Genetics, 2022, 109, 81-96.	2.6	24
93	Genome-Wide Linkage Scan for Genes Influencing Plasma Triglyceride Levels in the Veterans Administration Genetic Epidemiology Study. Diabetes, 2009, 58, 279-284.	0.3	23
94	Evidence Against an Important Role of Plasma Insulin and Glucagon Concentrations in the Increase in EGP Caused by SGLT2 Inhibitors. Diabetes, 2020, 69, 681-688.	0.3	23
95	Pioglitazone corrects dysregulation of skeletal muscle mitochondrial proteins involved in ATP synthesis in type 2 diabetes. Metabolism: Clinical and Experimental, 2021, 114, 154416.	1.5	23
96	Ultrasoundâ€Targeted Microbubble Destruction Mediates Gene Transfection for Beta ell Regeneration and Glucose Regulation. Small, 2021, 17, e2008177.	5.2	23
97	Adiponectin Alleviates Diet-Induced Inflammation in the Liver by Suppressing MCP-1 Expression and Macrophage Infiltration. Diabetes, 2021, 70, 1303-1316.	0.3	22
98	Exenatide: first-in-class incretin mimetic for the treatment of Type 2 diabetes mellitus. Expert Review of Endocrinology and Metabolism, 2006, 1, 329-341.	1.2	21
99	Inhibition of Renal Sodium–Glucose Cotransport With Empagliflozin Lowers Fasting Plasma Glucose and Improves β-Cell Function in Subjects With Impaired Fasting Glucose. Diabetes, 2017, 66, 2495-2502.	0.3	21
100	Effect of hyperinsulinemia on plasma leptin concentrations and food intake in rats. American Journal of Physiology - Endocrinology and Metabolism, 1998, 274, E998-E1001.	1.8	20
101	Empagliflozin and linagliptin combination therapy for treatment of patients with type 2 diabetes mellitus. Expert Opinion on Pharmacotherapy, 2015, 16, 2819-2833.	0.9	20
102	Time course of insulin action on tissue-specific intracellular glucose metabolism in normal rats. American Journal of Physiology - Endocrinology and Metabolism, 1998, 274, E642-E650.	1.8	18
103	Mild Physiologic Hyperglycemia Induces Hepatic Insulin Resistance in Healthy Normal Glucose-Tolerant Participants. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 2842-2850.	1.8	18
104	Increase in endogenous glucose production with SGLT2 inhibition is attenuated in individuals who underwent kidney transplantation and bilateral native nephrectomy. Diabetologia, 2020, 63, 2423-2433.	2.9	17
105	Chronic Continuous Exenatide Infusion Does Not Cause Pancreatic Inflammation and Ductal Hyperplasia in Non-Human Primates. American Journal of Pathology, 2015, 185, 139-150.	1.9	16
106	Association of Baseline Characteristics With Insulin Sensitivity and \hat{I}^2 -Cell Function in the Glycemia Reduction Approaches in Diabetes: A Comparative Effectiveness (GRADE) Study Cohort. Diabetes Care, 2021, 44, 340-349.	4.3	16
107	Impaired Suppression of Glucagon in Obese Subjects Parallels Decline in Insulin Sensitivity and Beta-Cell Function. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 1398-1409.	1.8	16
108	New Insights on the Interactions Between Insulin Clearance and the Main Glucose Homeostasis Mechanisms. Diabetes Care, 2021, 44, 2115-2123.	4.3	16

#	Article	IF	CITATIONS
109	Combined acute hyperglycemic and hyperinsulinemic clamp induced profibrotic and proinflammatory responses in the kidney. American Journal of Physiology - Cell Physiology, 2014, 306, C202-C211.	2.1	15
110	Discordance Between Central (Brain) and Pancreatic Action of Exenatide in Lean and Obese Subjects. Diabetes Care, 2016, 39, 1804-1810.	4.3	15
111	Reduced skeletal muscle phosphocreatine concentration in type 2 diabetic patients: a quantitative image-based phosphorus-31 MR spectroscopy study. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E229-E239.	1.8	15
112	Increase in Endogenous Glucose Production With SGLT2 Inhibition Is Unchanged by Renal Denervation and Correlates Strongly With the Increase in Urinary Glucose Excretion. Diabetes Care, 2020, 43, 1065-1069.	4.3	15
113	Effect of Mild Physiologic Hyperglycemia on Insulin Secretion, Insulin Clearance, and Insulin Sensitivity in Healthy Glucose-Tolerant Subjects. Diabetes, 2021, 70, 204-213.	0.3	15
114	Exenatide regulates pancreatic islet integrity and insulin sensitivity in the nonhuman primate baboon Papio hamadryas. JCl Insight, 2019, 4, .	2.3	15
115	Combination therapy with pioglitazone/exenatide/metformin reduces the prevalence of hepatic fibrosis and steatosis: The efficacy and durability of initial combination therapy for type 2 diabetes (<scp>EDICT</scp>). Diabetes, Obesity and Metabolism, 2022, 24, 899-907.	2.2	15
116	The Insulin-Sensitizer Pioglitazone Remodels Adipose Tissue Phospholipids in Humans. Frontiers in Physiology, 2021, 12, 784391.	1.3	13
117	Efficacy of Exenatide Plus Pioglitazone Vs Basal/Bolus Insulin in T2DM Patients With Very High HbA1c. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 2162-2170.	1.8	12
118	Newly Discovered Abnormal Glucose Tolerance in Patients With Acute Myocardial Infarction and Cardiovascular Outcomes: A Meta-analysis. Diabetes Care, 2020, 43, 1958-1966.	4.3	12
119	Prandial hepatic glucose production during hypoglycemia is altered after gastric bypass surgery and sleeve gastrectomy. Metabolism: Clinical and Experimental, 2022, 131, 155199.	1.5	12
120	Baseline Adiponectin Levels Do Not Influence the Response to Pioglitazone in ACT NOW. Diabetes Care, 2014, 37, 1706-1711.	4.3	11
121	Improved Beta Cell Glucose Sensitivity Plays Predominant Role in the Decrease in HbA1c with Cana and Lira in T2DM. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 3226-3233.	1.8	10
122	Acanthosis nigricans as a composite marker of cardiometabolic risk and its complex association with obesity and insulin resistance in Mexican American children. PLoS ONE, 2020, 15, e0240467.	1.1	10
123	Culture on a native bone marrowâ€derived extracellular matrix restores the pancreatic islet basement membrane, preserves islet function, and attenuates islet immunogenicity. FASEB Journal, 2020, 34, 8044-8056.	0.2	9
124	Proximal tubular epithelial insulin receptor mediates high-fat diet–induced kidney injury. JCI Insight, 2021, 6, .	2.3	8
125	Altered Insulin Clearance after Gastric Bypass and Sleeve Gastrectomy in the Fasting and Prandial Conditions. International Journal of Molecular Sciences, 2022, 23, 7667.	1.8	8
126	Genetic and environmental (physical fitness and sedentary activity) interaction effects on cardiometabolic risk factors in Mexican American children and adolescents. Genetic Epidemiology, 2018, 42, 378-393.	0.6	7

#	Article	lF	Citations
127	Ectopic BAT mUCP-1 overexpression in SKM by delivering a BMP7/PRDM16/PGC-1a gene cocktail or single PRMD16 using non-viral UTMD gene therapy. Gene Therapy, 2018, 25, 497-509.	2.3	7
128	Serum carotenoids and Pediatric Metabolic Index predict insulin sensitivity in Mexican American children. Scientific Reports, 2021, 11, 871.	1.6	6
129	Dapagliflozin Impairs the Suppression of Endogenous Glucose Production in Type 2 Diabetes Following Oral Glucose. Diabetes Care, 2022, 45, 1372-1380.	4.3	4
130	Effects of Sustained Hyperglycemia on Skeletal Muscle Lipids in Healthy Subjects. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e3177-e3185.	1.8	4
131	Mechanism of Action of Inhaled Insulin on Whole Body Glucose Metabolism in Subjects with Type 2 Diabetes Mellitus. International Journal of Molecular Sciences, 2019, 20, 4230.	1.8	3
132	Clinical Parameters, Fuel Oxidation, and Glucose Kinetics in Patients With Type 2 Diabetes Treated With Dapagliflozin Plus Saxagliptin. Diabetes Care, 2020, 43, 2519-2527.	4.3	3
133	Comment on Piccinini and Bergman. The Measurement of Insulin Clearance. Diabetes Care 2020;43:2296–2302. Diabetes Care, 2021, 44, e98-e99.	4.3	3
134	Therapeutic strategies for type 2 diabetes mellitus patients with very high HbA1c: is insulin the only option?. Annals of Translational Medicine, 2018, 6, S95-S95.	0.7	3
135	<scp>Type 2 diabetes</scp> subgroups and response to glucoseâ€lowering therapy: Results from the <scp>EDICT</scp> and Qatar studies. Diabetes, Obesity and Metabolism, 2022, 24, 1810-1818.	2.2	3
136	Effects of intravenous AICAR (5-aminoimidazole-4-carboximide riboside) administration on insulin signaling and resistance in premature baboons, Papio sp PLoS ONE, 2018, 13, e0208757.	1.1	2
137	Insulin secretion is a strong predictor for need of insulin therapy in patients with newâ€onset diabetes and <scp>HbA1c of more than 10%: A</scp> post hoc analysis of the <scp>EDICT</scp> study. Diabetes, Obesity and Metabolism, 2021, 23, 1631-1639.	2.2	2
138	Personalized approach for type 2 diabetes pharmacotherapy: where are we and where do we need to be?. Expert Opinion on Pharmacotherapy, 2021, 22, 1-13.	0.9	2
139	Effect of insulin and plasma amino acid concentration on leucine metabolism in cirrhosis. Hepatology, 1991, 14, 432-441.	3.6	2
140	Sodium–Glucose Cotransporter 2 Inhibitors and the Kidney. Diabetes Spectrum, 2021, 34, 225-234.	0.4	1
141	Mechanism of Metformin Action in Obese and Lean Noninsulin-Dependent Diabetic Subjects. , 0, .		1
142	Announcing a new quarterly journal from Wiley, New York…. Diabetic Medicine, 1985, 2, 216-216.	1.2	0
143	Preface: Cardiorenal Considerations for Type 2 Diabetesâ€"Time to Exit the Dark Ages. Diabetes Spectrum, 2021, 34, 214-215.	0.4	0
144	Title is missing!. , 2020, 15, e0240467.		O

#	Article	IF	CITATIONS
145	Title is missing!. , 2020, 15, e0240467.		O
146	Title is missing!. , 2020, 15, e0240467.		0
147	Title is missing!. , 2020, 15, e0240467.		O