
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6501781/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A nonparametric generally weighted moving average sign chart based on repetitive sampling.<br>Communications in Statistics Part B: Simulation and Computation, 2022, 51, 1137-1156. | 0.6 | 10        |
| 2  | Optimization of retrial queue with unreliable servers subject to imperfect coverage and reboot delay.<br>Quality Technology and Quantitative Management, 2022, 19, 428-453.         | 1.1 | 10        |
| 3  | Optimal replacement policy with replacement last under cumulative damage models. Reliability<br>Engineering and System Safety, 2021, 209, 107445.                                   | 5.1 | 8         |
| 4  | A generalized age-dependent minimal repair with random working times. Computers and Industrial<br>Engineering, 2021, 156, 107248.                                                   | 3.4 | 13        |
| 5  | A note on optimizing practical product warranty via linear pricing. Quality Technology and Quantitative Management, 2020, 17, 234-253.                                              | 1.1 | 6         |
| 6  | Optimum replacement policy for cumulative damage models based on multi-attributes. Computers and<br>Industrial Engineering, 2020, 139, 106206.                                      | 3.4 | 10        |
| 7  | Optimal replacement policies for a system based on a one-cycle criterion. Reliability Engineering and System Safety, 2019, 191, 106527.                                             | 5.1 | 5         |
| 8  | Optimization issues in k-out-of-n systems. Applied Mathematical Modelling, 2019, 73, 563-580.                                                                                       | 2.2 | 16        |
| 9  | Extended optimal preventive replacement policies with random working cycle. Reliability Engineering and System Safety, 2019, 188, 398-415.                                          | 5.1 | 38        |
| 10 | The generalized age maintenance policies with random working times. Reliability Engineering and System Safety, 2018, 169, 503-514.                                                  | 5.1 | 31        |
| 11 | Forecasting the volatility of a combined multi ountry stock index using GWMA algorithms. Expert<br>Systems, 2018, 35, e12248.                                                       | 2.9 | 1         |
| 12 | A trivariate optimal replacement policy for a deteriorating system based on cumulative damage and inspections. Reliability Engineering and System Safety, 2017, 160, 74-88.         | 5.1 | 15        |
| 13 | Cumulative Backup Policies for Database Systems. , 2017, , 235-254.                                                                                                                 |     | 3         |
| 14 | Robust Estimation for Weibull Distribution in Partially Accelerated Life Tests with Early Failures.<br>Quality and Reliability Engineering International, 2016, 32, 2207-2216.      | 1.4 | 9         |
| 15 | Optimal Replacement Policy Based on Cumulative Damage for a Two-Unit System. , 2016, , .                                                                                            |     | 0         |
| 16 | A note on a two variable block replacement policy for a system subject to non-homogeneous pure birth shocks. Applied Mathematical Modelling, 2016, 40, 3703-3712.                   | 2.2 | 16        |
| 17 | Optimal two-threshold replacement policy in a cumulative damage model. Annals of Operations Research, 2016, 244, 23-47.                                                             | 2.6 | 6         |
| 18 | Extended preventive replacement policy for a two-unit system subject to damage shocks. International<br>Journal of Production Research, 2015, 53, 4614-4628.                        | 4.9 | 16        |

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | An extended optimal replacement model for a deteriorating system with inspections. Reliability<br>Engineering and System Safety, 2015, 139, 33-49.                                                 | 5.1 | 20        |
| 20 | Optimal preventive maintenance and repair policies for multi-state systems. Reliability Engineering and System Safety, 2015, 140, 78-87.                                                           | 5.1 | 61        |
| 21 | Extended Optimal Replacement Policy for a Two-Unit System With Shock Damage Interaction. IEEE<br>Transactions on Reliability, 2015, 64, 998-1014.                                                  | 3.5 | 14        |
| 22 | Optimal number of repairs before replacement for a two-unit system subject to non-homogeneous pure birth process. Computers and Industrial Engineering, 2014, 69, 71-76.                           | 3.4 | 5         |
| 23 | Optimal Trivariate Replacement Policies for a Deteriorating System. Quality Technology and Quantitative Management, 2014, 11, 307-320.                                                             | 1.1 | 6         |
| 24 | Quantitative Evaluation in Reliability and Maintenance. Quality Technology and Quantitative Management, 2014, 11, 229-230.                                                                         | 1.1 | 1         |
| 25 | Chapter 5: Cumulative Damage Models with Random Working Times. , 2014, , 79-98.                                                                                                                    |     | 3         |
| 26 | An Optimal Age Replacement Policy for Multi-State Systems. IEEE Transactions on Reliability, 2013, 62, 722-735.                                                                                    | 3.5 | 61        |
| 27 | Extended optimal replacement policy for a two-unit system with failure rate interaction and external shocks. International Journal of Systems Science, 2013, 44, 877-888.                          | 3.7 | 31        |
| 28 | A Bivariate Optimal Replacement Policy for a System With Age-dependent Minimal Repair and<br>Cumulative Repair-cost Limit. Communications in Statistics - Theory and Methods, 2013, 42, 4108-4126. | 0.6 | 21        |
| 29 | Application of generally weighted moving average method to tracking signal state space model. Expert<br>Systems, 2013, 30, 429-435.                                                                | 2.9 | 4         |
| 30 | Age replacement policy with lead-time for a system subject to non-homogeneous pure birth shocks.<br>Applied Mathematical Modelling, 2013, 37, 7717-7725.                                           | 2.2 | 14        |
| 31 | Extended optimal replacement policy for a system subject to non-homogeneous pure birth shocks.<br>Computers and Industrial Engineering, 2013, 64, 573-579.                                         | 3.4 | 9         |
| 32 | Age replacement policy for a two-unit system subject to non-homogeneous pure birth shocks. Applied<br>Mathematical Modelling, 2013, 37, 7027-7036.                                                 | 2.2 | 15        |
| 33 | Optimal Number of Repairs Before Replacement for a System Subject to Shocks of a Non-Homogeneous<br>Pure Birth Process. IEEE Transactions on Reliability, 2013, 62, 73-81.                         | 3.5 | 16        |
| 34 | Optimal replacement model with age-dependent failure type based on a cumulative repair-cost limit policy. Applied Mathematical Modelling, 2013, 37, 308-317.                                       | 2.2 | 30        |
| 35 | Phase II statistical process control for functional data. Journal of Statistical Computation and Simulation, 2013, 83, 2144-2159.                                                                  | 0.7 | 4         |
| 36 | The Generally Weighted Moving Average Variance Chart. Communications in Statistics - Theory and Methods, 2013, 42, 3204-3214.                                                                      | 0.6 | 6         |

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Maximum Chi-Square Generally Weighted Moving Average Control Chart for Monitoring Process<br>Mean and Variability. Communications in Statistics - Theory and Methods, 2013, 42, 4323-4341.     | 0.6 | 14        |
| 38 | Availability of a repairable retrial system with warm standby components. International Journal of Computer Mathematics, 2013, 90, 2279-2297.                                                  | 1.0 | 20        |
| 39 | A generalised maintenance policy with age-dependent minimal repair cost for a system subject to shocks under periodic overhaul. International Journal of Systems Science, 2012, 43, 1007-1013. | 3.7 | 35        |
| 40 | A Block Replacement Policy for Systems Subject to Non-homogeneous Pure Birth Shocks. IEEE<br>Transactions on Reliability, 2012, 61, 741-748.                                                   | 3.5 | 8         |
| 41 | An Extended Sequential Imperfect Preventive Maintenance Model with Improvement Factors.<br>Communications in Statistics - Theory and Methods, 2012, 41, 1269-1283.                             | 0.6 | 13        |
| 42 | A note on replacement policy for a system subject to non-homogeneous pure birth shocks. European<br>Journal of Operational Research, 2012, 216, 503-508.                                       | 3.5 | 24        |
| 43 | Optimal maintenance policy for a system subject to damage in a discrete time process. Reliability<br>Engineering and System Safety, 2012, 103, 1-10.                                           | 5.1 | 25        |
| 44 | Erratum to "An Extended Periodic Imperfect Preventive Maintenance Model With Age-Dependent<br>Failure Type―[Jun 09 397-405]. IEEE Transactions on Reliability, 2011, 60, 515-515.              | 3.5 | 2         |
| 45 | A multi-criteria optimal replacement policy for a system subject to shocks. Computers and Industrial Engineering, 2011, 61, 1035-1043.                                                         | 3.4 | 32        |
| 46 | Optimal age-replacement time with minimal repair based on cumulative repair-cost limit for a system subject to shocks. Annals of Operations Research, 2011, 186, 317-329.                      | 2.6 | 20        |
| 47 | Age Replacement Policy with a Safety Constraint via the Bayesian Method. Communications in<br>Statistics - Theory and Methods, 2011, 40, 4151-4164.                                            | 0.6 | 1         |
| 48 | An age replacement policy via the Bayesian method. International Journal of Systems Science, 2011, 42, 469-477.                                                                                | 3.7 | 6         |
| 49 | Optimal age-replacement model with age-dependent type of failure and random lead time based on a cumulative repair-cost limit policy. Annals of Operations Research, 2010, 181, 723-744.       | 2.6 | 21        |
| 50 | A Periodic Replacement Model Based on Cumulative Repair-Cost Limit for a System Subjected to Shocks.<br>IEEE Transactions on Reliability, 2010, 59, 374-382.                                   | 3.5 | 20        |
| 51 | Optimal number of minimal repairs before replacement based on a cumulative repair-cost limit policy.<br>Computers and Industrial Engineering, 2010, 59, 603-610.                               | 3.4 | 46        |
| 52 | Bayesian multivariate imperfect repair model. Journal of Statistics and Management Systems, 2010, 13, 1133-1148.                                                                               | 0.3 | 0         |
| 53 | Extended periodic imperfect preventive maintenance model of a system subjected to shocks.<br>International Journal of Systems Science, 2010, 41, 1145-1153.                                    | 3.7 | 17        |
| 54 | A Generalized Periodic Preventive Maintenance Model With Virtual Age for a System Subjected to Shocks. Communications in Statistics - Theory and Methods, 2010, 39, 2379-2393.                 | 0.6 | 11        |

**SHEY-HUEI SHEU** 

| #  | Article                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Optimal age-replacement time with minimal repair based on cumulative repair cost limit and random lead time. International Journal of Systems Science, 2009, 40, 703-715.            | 3.7 | 25        |
| 56 | An Extended Periodic Imperfect Preventive Maintenance Model With Age-Dependent Failure Type. IEEE<br>Transactions on Reliability, 2009, 58, 397-405.                                 | 3.5 | 70        |
| 57 | Monitoring process mean and variability with generally weighted moving average control charts.<br>Computers and Industrial Engineering, 2009, 57, 401-407.                           | 3.4 | 36        |
| 58 | Monitoring the mean of autocorrelated observations with one generally weighted moving average control chart. Journal of Statistical Computation and Simulation, 2009, 79, 1393-1406. | 0.7 | 16        |
| 59 | The extended GWMA control chart. Journal of Applied Statistics, 2009, 36, 135-147.                                                                                                   | 0.6 | 34        |
| 60 | MONITORING AUTOCORRELATED PROCESS MEAN AND VARIANCE USING A GWMA CHART BASED ON RESIDUALS. Asia-Pacific Journal of Operational Research, 2008, 25, 781-792.                          | 0.9 | 12        |
| 61 | Fast Initial Response Features for Poisson GWMA Control Charts. Communications in Statistics Part<br>B: Simulation and Computation, 2008, 37, 1422-1439.                             | 0.6 | 17        |
| 62 | Poisson GWMA Control Chart. Communications in Statistics Part B: Simulation and Computation, 2007, 36, 1099-1114.                                                                    | 0.6 | 26        |
| 63 | Economic design of the integrated multivariate EPC and multivariate SPC charts. Quality and Reliability Engineering International, 2007, 23, 203-218.                                | 1.4 | 14        |
| 64 | The Generally Weighted Moving Average Control Chart for Monitoring the Process Median. Quality Engineering, 2006, 18, 333-344.                                                       | 0.7 | 37        |
| 65 | The Generally Weighted Moving Average Median Control Chart. Quality Technology and Quantitative Management, 2006, 3, 455-471.                                                        | 1.1 | 12        |
| 66 | Extended optimal age-replacement policy with minimal repair of a system subject to shocks. European<br>Journal of Operational Research, 2006, 174, 169-181.                          | 3.5 | 72        |
| 67 | An extended optimal replacement model of systems subject to shocks. European Journal of<br>Operational Research, 2006, 175, 399-412.                                                 | 3.5 | 55        |
| 68 | Integrating multivariate engineering process control and multivariate statistical process control.<br>International Journal of Advanced Manufacturing Technology, 2006, 29, 129-136. | 1.5 | 21        |
| 69 | Optimal number of production corrections before maintenance of imperfect production processes.<br>International Journal of Advanced Manufacturing Technology, 2006, 30, 319-327.     | 1.5 | 0         |
| 70 | Generally weighted moving average control chart for monitoring process variability. International<br>Journal of Advanced Manufacturing Technology, 2006, 30, 452-458.                | 1.5 | 30        |
| 71 | AN EXTENDED EXPONENTIALLT WEIGHTED MOVING AVERAGE CONTROL CHART FOR MONITORING POISSON OBSERVATIONS. , 2006, , .                                                                     |     | 0         |
| 72 | TWO STAGE BURN-IN POLICY. , 2006, , .                                                                                                                                                |     | 0         |

| #  | Article                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Optimal Policies With Decreasing Probability of Imperfect Maintenance. IEEE Transactions on Reliability, 2005, 54, 347-357.                                                 | 3.5 | 32        |
| 74 | OPTIMAL WARRANTY PERIOD AND OPTIMAL REPLACEMENT AGE OUT-OF-WARRANTY. Journal of the Chinese Institute of Industrial Engineers, 2005, 22, 401-407.                           | 0.5 | 5         |
| 75 | Optimal lot-sizing problem with imperfect maintenance and imperfect production. International<br>Journal of Systems Science, 2004, 35, 69-77.                               | 3.7 | 38        |
| 76 | WARRANTY STRATEGY ACCOUNTS FOR PRODUCTS WITH BATHTUB FAILURE RATE. , 2004, , .                                                                                              |     | 0         |
| 77 | JOINT DETERMINATION OF THE IMPERFECT MAINTENANCE AND IMPERFECT PRODUCTION TO LOT-SIZING PROBLEM. , 2004, , .                                                                |     | Ο         |
| 78 | Generalized sequential preventive maintenance policy of a system subject to shocks. International<br>Journal of Systems Science, 2002, 33, 267-276.                         | 3.7 | 9         |
| 79 | An optimal replacement period for a k-out-of-n: F system subject to shocks. International Journal of<br>Systems Science, 2001, 32, 565-573.                                 | 3.7 | 7         |
| 80 | A Bayesian approach to an adaptive preventive maintenance model. Reliability Engineering and System Safety, 2001, 71, 33-44.                                                | 5.1 | 56        |
| 81 | Optimal age and block replacement policies for a multi-component system with failure interaction.<br>International Journal of Systems Science, 2000, 31, 593-603.           | 3.7 | 48        |
| 82 | A Bayesian perspective on age replacement with minimal repair. Reliability Engineering and System Safety, 1999, 65, 55-64.                                                  | 5.1 | 37        |
| 83 | Extended optimal replacement model for deteriorating systems. European Journal of Operational Research, 1999, 112, 503-516.                                                 | 3.5 | 66        |
| 84 | A generalized age and block replacement of a system subject to shocks. European Journal of<br>Operational Research, 1998, 108, 345-362.                                     | 3.5 | 103       |
| 85 | Optimal age and block replacement policies for a multi-component system with a shock type failure interaction. International Journal of Systems Science, 1998, 29, 805-817. | 3.7 | 5         |
| 86 | Extended block replacement policy of a system subject to shocks. IEEE Transactions on Reliability, 1997, 46, 375-382.                                                       | 3.5 | 13        |
| 87 | A modified block replacement policy with two variables and general random minimal repair cost.<br>Journal of Applied Probability, 1996, 33, 557-572.                        | 0.4 | 9         |
| 88 | Optimal number of minimal repairs before replacement of a system subject to shocks. Naval Research<br>Logistics, 1996, 43, 319-333.                                         | 1.4 | 89        |
| 89 | A modified block replacement policy with two variables and general random minimal repair cost.<br>Journal of Applied Probability, 1996, 33, 557-572.                        | 0.4 | 23        |
| 90 | Extended optimal replacement model with random minimal repair costs. European Journal of<br>Operational Research, 1995, 85, 636-649.                                        | 3.5 | 107       |

| #   | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | A generalized sequential preventive maintenance policy for repairable systems with general random minimal repair costs. International Journal of Systems Science, 1995, 26, 681-690.                    | 3.7 | 10        |
| 92  | Optimal age replacement policy of a \$k\$-out-of-\$n\$ system with age-dependent minimal repair. RAIRO -<br>Operations Research, 1994, 28, 85-96.                                                       | 1.0 | 5         |
| 93  | A generalized model for determining optimal number of minimal repairs before replacement. European<br>Journal of Operational Research, 1993, 69, 38-49.                                                 | 3.5 | 34        |
| 94  | Extended optimal age replacement policy with minimal repair. RAIRO - Operations Research, 1993, 27, 337-351.                                                                                            | 1.0 | 28        |
| 95  | Multivariate imperfect repair. Journal of Applied Probability, 1992, 29, 947-956.                                                                                                                       | 0.4 | 27        |
| 96  | Optimal block replacement policies with multiple choice at failure. Journal of Applied Probability, 1992, 29, 129-141.                                                                                  | 0.4 | 26        |
| 97  | Optimal block replacement policies with multiple choice at failure. Journal of Applied Probability, 1992, 29, 129-141.                                                                                  | 0.4 | 22        |
| 98  | Multivariate imperfect repair. Journal of Applied Probability, 1992, 29, 947-956.                                                                                                                       | 0.4 | 15        |
| 99  | An ordering policy with age-dependent minimal repair and age-dependent random repair costs.<br>Microelectronics Reliability, 1992, 32, 1105-1113.                                                       | 0.9 | 7         |
| 100 | A general replacement of a system subject to shocks. Microelectronics Reliability, 1992, 32, 657-662.                                                                                                   | 0.9 | 2         |
| 101 | An age replacement policy with minimal repair and general random repair cost. Microelectronics<br>Reliability, 1992, 32, 1283-1289.                                                                     | 0.9 | 4         |
| 102 | A Generalized Block Replacement Policy with Minimal Repair and General Random Repair Costs for a<br>Multi-unit System. Journal of the Operational Research Society, 1991, 42, 331-341.                  | 2.1 | 57        |
| 103 | Multivariate ageâ€dependent imperfect repair. Naval Research Logistics, 1991, 38, 839-850.                                                                                                              | 1.4 | 43        |
| 104 | Integrating EPC and SPC for MIMO System. , 0, , .                                                                                                                                                       |     | 0         |
| 105 | Optimal number of minimal repairs before replacement of a deteriorating system with inspections.<br>International Journal of Systems Science, 0, , 1-13.                                                | 3.7 | 3         |
| 106 | Optimal periodic preventive maintenance policy for a system subject to failures/repairs which follow the non-homogeneous pure birth process. Quality Technology and Quantitative Management, 0, , 1-13. | 1.1 | 9         |