
## Yuqing Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6501634/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Review of tool condition monitoring methods in milling processes. International Journal of<br>Advanced Manufacturing Technology, 2018, 96, 2509-2523.                                                                                    | 1.5 | 220       |
| 2  | Convolutional neural network-based hidden Markov models for rolling element bearing fault<br>identification. Knowledge-Based Systems, 2018, 144, 65-76.                                                                                  | 4.0 | 190       |
| 3  | Latest developments in gear defect diagnosis and prognosis: A review. Measurement: Journal of the<br>International Measurement Confederation, 2020, 158, 107735.                                                                         | 2.5 | 136       |
| 4  | Improved deep convolution neural network (CNN) for the identification of defects in the centrifugal pump using acoustic images. Applied Acoustics, 2020, 167, 107399.                                                                    | 1.7 | 103       |
| 5  | Novel Convolutional Neural Network (NCNN) for the Diagnosis of Bearing Defects in Rotary<br>Machinery. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-10.                                                             | 2.4 | 96        |
| 6  | Bearing defect size assessment using wavelet transform based Deep Convolutional Neural Network<br>(DCNN). AEJ - Alexandria Engineering Journal, 2020, 59, 999-1012.                                                                      | 3.4 | 67        |
| 7  | A Multisensor Fusion Method for Tool Condition Monitoring in Milling. Sensors, 2018, 18, 3866.                                                                                                                                           | 2.1 | 65        |
| 8  | A new tool wear condition monitoring method based on deep learning under small samples.<br>Measurement: Journal of the International Measurement Confederation, 2022, 189, 110622.                                                       | 2.5 | 63        |
| 9  | Variational mode decomposition based symmetric single valued neutrosophic cross entropy measure for the identification of bearing defects in a centrifugal pump. Applied Acoustics, 2020, 165, 107294.                                   | 1.7 | 59        |
| 10 | Fault diagnosis of rolling element bearing based on symmetric cross entropy of neutrosophic sets.<br>Measurement: Journal of the International Measurement Confederation, 2020, 152, 107318.                                             | 2.5 | 53        |
| 11 | Tool Wear Condition Monitoring in Milling Process Based on Current Sensors. IEEE Access, 2020, 8, 95491-95502.                                                                                                                           | 2.6 | 53        |
| 12 | Tool wear condition monitoring based on a two-layer angle kernel extreme learning machine using sound sensor for milling process. Journal of Intelligent Manufacturing, 2022, 33, 247-258.                                               | 4.4 | 51        |
| 13 | An improved FMEA method based on the linguistic weighted geometric operator and fuzzy priority.<br>Quality Engineering, 2016, 28, 491-498.                                                                                               | 0.7 | 48        |
| 14 | A tool condition monitoring method based on two-layer angle kernel extreme learning machine and<br>binary differential evolution for milling. Measurement: Journal of the International Measurement<br>Confederation, 2020, 166, 108186. | 2.5 | 46        |
| 15 | An intrinsic timescale decomposition-based kernel extreme learning machine method to detect tool<br>wear conditions in the milling process. International Journal of Advanced Manufacturing<br>Technology, 2020, 106, 1203-1212.         | 1.5 | 29        |
| 16 | Sample Augmentation for Intelligent Milling Tool Wear Condition Monitoring Using Numerical<br>Simulation and Generative Adversarial Network. IEEE Transactions on Instrumentation and<br>Measurement, 2021, 70, 1-10.                    | 2.4 | 26        |
| 17 | An online damage identification approach for numerical control machine tools based on data fusion using vibration signals. JVC/Journal of Vibration and Control, 2015, 21, 2925-2936.                                                    | 1.5 | 24        |
| 18 | A GAPSO-Enhanced Extreme Learning Machine Method for Tool Wear Estimation in Milling Processes<br>Based on Vibration Signals. International Journal of Precision Engineering and Manufacturing - Green<br>Technology, 2021, 8, 745-759.  | 2.7 | 20        |

Yuqing Zhou

| #  | Article                                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Numerical Control Machine Tool Fault Diagnosis Using Hybrid Stationary Subspace Analysis and Least<br>Squares Support Vector Machine with a Single Sensor. Applied Sciences (Switzerland), 2017, 7, 346.                                                                                     | 1.3 | 19        |
| 20 | A two-stage method for bearing fault detection using graph similarity evaluation. Measurement:<br>Journal of the International Measurement Confederation, 2020, 165, 108138.                                                                                                                 | 2.5 | 17        |
| 21 | An edge-labeling graph neural network method for tool wear condition monitoring using wear image with small samples. Measurement Science and Technology, 2021, 32, 064006.                                                                                                                   | 1.4 | 15        |
| 22 | Impact energy level assessment of composite structures using MUSIC-ANN approach. Structural<br>Control and Health Monitoring, 2016, 23, 825-837.                                                                                                                                             | 1.9 | 12        |
| 23 | Tool wear condition monitoring in milling process based on data fusion enhanced long short-term<br>memory network under different cutting conditions. Eksploatacja I Niezawodnosc, 2021, 23, 612-618.                                                                                        | 1.1 | 12        |
| 24 | Hankel Matrix-Based Condition Monitoring of Rolling Element Bearings: An Enhanced Framework for<br>Time-Series Analysis. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-10.                                                                                               | 2.4 | 10        |
| 25 | Markov Transition Field Enhanced Deep Domain Adaptation Network for Milling Tool Condition<br>Monitoring. Micromachines, 2022, 13, 873.                                                                                                                                                      | 1.4 | 9         |
| 26 | NC Machine Tools Fault Diagnosis Based on Kernel PCA and <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"<br/>id="M1"&gt;<mml:mrow><mml:mi>k</mml:mi>x/mml:mrow&gt;-Nearest Neighbor Using Vibration<br/>Signals. Shock and Vibration, 2015, 2015, 1-10.</mml:mrow></mml:math<br> | 0.3 | 8         |
| 27 | Nonlinear dynamic analysis of a cycloidal ball planetary transmission considering tooth<br>undercutting. Mechanism and Machine Theory, 2020, 145, 103694.                                                                                                                                    | 2.7 | 8         |
| 28 | A novel health indicator developed using filter-based feature selection algorithm for the<br>identification of rotor defects. Proceedings of the Institution of Mechanical Engineers, Part O:<br>Journal of Risk and Reliability, 2022, 236, 529-541.                                        | 0.6 | 7         |
| 29 | Study on ADRC Parameter Optimization Using CPSO for Clamping Force Control System. Mathematical<br>Problems in Engineering, 2018, 2018, 1-8.                                                                                                                                                 | 0.6 | 6         |
| 30 | New Tool Wear Estimation Method of the Milling Process Based on Multisensor Blind Source<br>Separation. Mathematical Problems in Engineering, 2021, 2021, 1-11.                                                                                                                              | 0.6 | 5         |
| 31 | Segmentation and quantitative evaluation for tool wear condition via an improved SE-U-Net.<br>International Journal of Advanced Manufacturing Technology, 0, , .                                                                                                                             | 1.5 | 5         |
| 32 | Nonlinear Dynamic Analysis of a Trochoid Cam Gear. Journal of Mechanical Design, Transactions of the ASME, 2020, 142, .                                                                                                                                                                      | 1.7 | 4         |
| 33 | A tool wear condition monitoring approach for end milling based on numerical simulation.<br>Eksploatacja I Niezawodnosc, 2021, 23, 371-380.                                                                                                                                                  | 1.1 | 3         |
| 34 | Research on E-Government System Evaluation Based on Hierarchical Grey Analysis. , 2010, , .                                                                                                                                                                                                  |     | 0         |
| 35 | Research on Extension Evaluation of Knowledge Sharing Level in Organization. , 2010, , .                                                                                                                                                                                                     |     | 0         |
| 36 | A new damage diagnosis approach for NC machine tools based on hybrid Stationary subspace analysis.<br>Journal of Physics: Conference Series, 2017, 842, 012047.                                                                                                                              | 0.3 | 0         |

| #  | Article                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Research on quality of banking services based on QFD and SERVQUAL model. International Journal of Services Operations and Informatics, 2018, 9, 265. | 0.2 | 0         |
| 38 | A Classification of Milling TCM Based on Bandpass Filter and Kernel Extreme Learning Machine. , 2018, ,                                              |     | 0         |

.