
Rui Gusmão

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/650147/publications.pdf Version: 2024-02-01

Ριμ Ομεμάξο

#	Article	IF	CITATIONS
1	Enhanced voltammetric performance of sensors based on oxidized 2D layered black phosphorus. Talanta, 2022, 238, 123036.	2.9	3
2	Exfoliated Fe3GeTe2 and Ni3GeTe2 materials as water splitting electrocatalysts. FlatChem, 2022, 32, 100334.	2.8	11
3	Synthesis of Magnesium Phosphorous Trichalcogenides and Applications in Photoelectrochemical Water Splitting. Small, 2022, 18, e2200355.	5.2	8
4	PtSe ₂ on a reduced graphene oxide foil for the alkaline hydrogen evolution reaction. Materials Advances, 2022, 3, 4348-4358.	2.6	6
5	Electromagnetic Interference Shielding by Reduced Graphene Oxide Foils. ACS Applied Nano Materials, 2022, 5, 6792-6800.	2.4	13
6	Antimony nanomaterials modified screen-printed electrodes for the voltammetric determination of metal ions. Electrochimica Acta, 2022, 425, 140690.	2.6	9
7	Photoelectrochemical Activity of Layered Metal Phosphorous Trichalcogenides for Water Oxidation. Advanced Materials Interfaces, 2021, 8, 2100294.	1.9	8
8	Cobalt Phosphorous Trisulfide as a High-Performance Electrocatalyst for the Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2021, 13, 23638-23646.	4.0	31
9	Phosphorene and other layered pnictogens as a new source of 2D materials for electrochemical sensors. TrAC - Trends in Analytical Chemistry, 2021, 139, 116249.	5.8	25
10	Comparison between layered Pt3Te4 and PtTe2 for electrocatalytic reduction reactions. FlatChem, 2021, 29, 100280.	2.8	22
11	Enhanced voltammetric determination of metal ions by using a bismuthene-modified screen-printed electrode. Electrochimica Acta, 2020, 362, 137144.	2.6	25
12	Recent Advances in the Electromagnetic Interference Shielding of 2D Materials beyond Graphene. ACS Applied Electronic Materials, 2020, 2, 3048-3071.	2.0	59
13	Recent Developments on the Single Atom Supported at 2D Materials Beyond Graphene as Catalysts. ACS Catalysis, 2020, 10, 9634-9648.	5.5	102
14	A highly sensitive enzyme-less glucose sensor based on pnictogens and silver shell–gold core nanorod composites. Chemical Communications, 2020, 56, 7909-7912.	2.2	16
15	Towards Antimonene and 2D Antimony Telluride through Electrochemical Exfoliation. Chemistry - A European Journal, 2020, 26, 6583-6590.	1.7	32
16	Synthesis Protocols of the Most Common Layered Carbide and Nitride MAX Phases. Small Methods, 2020, 4, 1900780.	4.6	53
17	Antimony Chalcogenide van der Waals Nanostructures for Energy Conversion and Storage. ACS Sustainable Chemistry and Engineering, 2019, 7, 15790-15798.	3.2	24
18	MoS ₂ versatile spray-coating of 3D electrodes for the hydrogen evolution reaction. Nanoscale, 2019, 11, 9888-9895.	2.8	24

Rui Gusmão

#	Article	IF	CITATIONS
19	The capacitance and electron transfer of 3D-printed graphene electrodes are dramatically influenced by the type of solvent used for pre-treatment. Electrochemistry Communications, 2019, 102, 83-88.	2.3	96
20	Pnictogenâ€Based Enzymatic Phenol Biosensors: Phosphorene, Arsenene, Antimonene, and Bismuthene. Angewandte Chemie - International Edition, 2019, 58, 134-138.	7.2	96
21	Exfoliated Layered Manganese Trichalcogenide Phosphite (MnP <i>X</i> ₃ , <i>X</i> = S, Se) as Electrocatalytic van der Waals Materials for Hydrogen Evolution. Advanced Functional Materials, 2019, 29, 1805975.	7.8	85
22	Pnictogenâ€Based Enzymatic Phenol Biosensors: Phosphorene, Arsenene, Antimonene, and Bismuthene. Angewandte Chemie, 2019, 131, 140-144.	1.6	4
23	Cytotoxicity of Shear Exfoliated Pnictogen (As, Sb, Bi) Nanosheets. Chemistry - A European Journal, 2019, 25, 2242-2249.	1.7	34
24	Metal Phosphorous Trichalcogenides (MPCh ₃): From Synthesis to Contemporary Energy Challenges. Angewandte Chemie - International Edition, 2019, 58, 9326-9337.	7.2	73
25	Metallâ€Phosphorâ€Trichalkogenide (MPCh 3): von der Synthese zu aktuellen Energieanwendungen. Angewandte Chemie, 2019, 131, 9426-9438.	1.6	5
26	Black Phosphorus Synthesis Path Strongly Influences Its Delamination, Chemical Properties and Electrochemical Performance. ACS Applied Energy Materials, 2018, 1, 503-509.	2.5	19
27	Layered franckeite and teallite intrinsic heterostructures: shear exfoliation and electrocatalysis. Journal of Materials Chemistry A, 2018, 6, 16590-16599.	5.2	18
28	Functional Protection of Exfoliated Black Phosphorus by Noncovalent Modification with Anthraquinone. ACS Nano, 2018, 12, 5666-5673.	7.3	79
29	Schwarzer Phosphor neu entdeckt: vom Volumenmaterial zu Monoschichten. Angewandte Chemie, 2017, 129, 8164-8185.	1.6	59
30	Black Phosphorus Rediscovered: From Bulk Material to Monolayers. Angewandte Chemie - International Edition, 2017, 56, 8052-8072.	7.2	407
31	Screen-printed carbon electrodes doped with TiO2-Au nanocomposites with improved electrocatalytic performance. Materials Today Communications, 2017, 11, 11-17.	0.9	14
32	The Role of the Metal Element in Layered Metal Phosphorus Triselenides upon Their Electrochemical Sensing and Energy Applications. ACS Catalysis, 2017, 7, 8159-8170.	5.5	83
33	Synergetic Metals on Carbocatalyst Shungite. Chemistry - A European Journal, 2017, 23, 18232-18238.	1.7	12
34	Pnictogen (As, Sb, Bi) Nanosheets for Electrochemical Applications Are Produced by Shear Exfoliation Using Kitchen Blenders. Angewandte Chemie - International Edition, 2017, 56, 14417-14422.	7.2	216
35	Pnictogen (As, Sb, Bi) Nanosheets for Electrochemical Applications Are Produced by Shear Exfoliation Using Kitchen Blenders. Angewandte Chemie, 2017, 129, 14609-14614.	1.6	87
36	Innentitelbild: Pnictogen (As, Sb, Bi) Nanosheets for Electrochemical Applications Are Produced by Shear Exfoliation Using Kitchen Blenders (Angew. Chem. 46/2017). Angewandte Chemie, 2017, 129, 14510-14510.	1.6	2

Rui Gusmão

#	Article	IF	CITATIONS
37	Contrasts between Mild and Harsh Oxidation of Carbon Nanotubes in terms of their Properties and Electrochemical Performance. ChemElectroChem, 2016, 3, 1713-1719.	1.7	11
38	Role of Carbonaceous Fragments on the Functionalization and Electrochemistry of Carbon Materials. ChemElectroChem, 2016, 3, 2138-2145.	1.7	7
39	Multifunctional electrocatalytic hybrid carbon nanocables with highly active edges on their walls. Nanoscale, 2016, 8, 6700-6711.	2.8	10
40	Electrochemical Fluorographane: Hybrid Electrocatalysis of Biomarkers, Hydrogen Evolution, and Oxygen Reduction. Chemistry - A European Journal, 2015, 21, 16474-16478.	1.7	14
41	Probing the surface of oxidized carbon nanotubes by selective interaction with target molecules. Electrochemistry Communications, 2015, 57, 22-26.	2.3	8
42	Enhanced electrochemical sensing of polyphenols by an oxygen-mediated surface. RSC Advances, 2015, 5, 5024-5031.	1.7	28
43	Chemometric Analysis of Voltammetric Data on Metal Ion Binding by Selenocystine. Journal of Physical Chemistry A, 2012, 116, 6526-6531.	1.1	2
44	Voltammetric Analysis of Phytochelatin Complexation in Ternary Metal Mixtures Supported by Multivariate Analysis and ESIâ€MS. Electroanalysis, 2012, 24, 309-315.	1.5	8
45	Combination of chemometrically assisted voltammetry, calorimetry, and circular dichroism as a new method for the study of bioinorganic substances: application to selenocystine metal complexes. Journal of Biological Inorganic Chemistry, 2012, 17, 321-329.	1.1	6
46	From cysteine to longer chain thiols: thermodynamic analysis of cadmium binding by phytochelatins and their fragments. Metallomics, 2011, 3, 838.	1.0	18
47	Marcus–Hush–Chidsey theory of electron transfer to and from species bound at a non-uniform electrode surface: Theory and experiment. Chemical Physics Letters, 2011, 517, 108-112.	1.2	21
48	Electroanalysis of the binding and adsorption of Hg2+ with seleno aminoacids by differential pulse and elimination voltammetry at the Au-disk electrode. Electrochimica Acta, 2011, 56, 5988-5992.	2.6	9
49	Electrochemical survey of the chain length influence in phytochelatins competitive binding by cadmium. Analytical Biochemistry, 2010, 406, 61-69.	1.1	21
50	Circular Dichroism and Voltammetry, Assisted by Multivariate Curve Resolution, and Mass Spectrometry of the Competitive Metal Binding by Phytochelatin PC ₅ . Analytical Chemistry, 2010, 82, 9006-9013.	3.2	29
51	Cadmium binding in mixtures of phytochelatins and their fragments: A voltammetric study assisted by multivariate curve resolution and mass spectrometry. Analyst, The, 2010, 135, 86-95.	1.7	21
52	Competitive binding of cadmium by plant thiols: an electrochemical study assisted by multivariate curve resolution. Analytical and Bioanalytical Chemistry, 2009, 394, 1137-1145.	1.9	11
53	Determination of complex formation constants by phase sensitive alternating current polarography: Cadmium–polymethacrylic acid and cadmium–polygalacturonic acid. Talanta, 2007, 73, 776-782.	2.9	8