Paul Christou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/650134/publications.pdf

Version: 2024-02-01

261 papers

22,626 citations

74

h-index

9264

140 g-index

267 all docs

267 docs citations

times ranked

267

13994 citing authors

#	Article	IF	CITATIONS
1	â€~Green revolution' genes encode mutant gibberellin response modulators. Nature, 1999, 400, 256-261.	27.8	1,876
2	The production of recombinant pharmaceutical proteins in plants. Nature Reviews Genetics, 2003, 4, 794-805.	16.3	829
3	Molecular farming in plants: host systems and expression technology. Trends in Biotechnology, 2003, 21, 570-578.	9.3	627
4	<i>Bacillus thuringiensis</i> : a century of research, development and commercial applications. Plant Biotechnology Journal, 2011, 9, 283-300.	8.3	598
5	Plant-based production of biopharmaceuticals. Current Opinion in Plant Biology, 2004, 7, 152-158.	7.1	563
6	Production of Transgenic Rice (Oryza Sativa L.) Plants from Agronomically Important Indica and Japonica Varieties via Electric Discharge Particle Acceleration of Exogenous DNA into Immature Zygotic Embryos. Bio/technology, 1991, 9, 957-962.	1.5	534
7	Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9909-9914.	7.1	532
8	Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7762-7767.	7.1	457
9	Stable Transformation of Soybean (Glycine Max) by Particle Acceleration. Nature Biotechnology, 1988, 6, 923-926.	17.5	423
10	Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18232-18237.	7.1	330
11	Sowing the seeds of success: pharmaceutical proteins from plants. Current Opinion in Biotechnology, 2005, 16, 167-173.	6.6	315
12	Expression of snowdrop lectin (GNA) in transgenic rice plants confers resistance to rice brown planthopper. Plant Journal, 1998, 15, 469-477.	5.7	299
13	Particle bombardment and the genetic enhancement of crops: myths and realities. Molecular Breeding, 2005, 15, 305-327.	2.1	291
14	Molecular farming for new drugs and vaccines. EMBO Reports, 2005, 6, 593-599.	4.5	286
15	Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Molecular Biology, 2000, 42, 583-590.	3.9	283
16	Transgene organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 7203-7208.	7.1	262
17	Endosperm-Specific Co-Expression of Recombinant Soybean Ferritin and Aspergillus Phytase in Maize Results in Significant Increases in the Levels of Bioavailable Iron. Plant Molecular Biology, 2005, 59, 869-880.	3.9	252
18	Recent developments and future prospects in insect pest control in transgenic crops. Trends in Plant Science, 2006, 11, 302-308.	8.8	251

#	Article	IF	CITATIONS
19	Transgene integration, organization and interaction in plants. Plant Molecular Biology, 2003, 52, 247-258.	3.9	241
20	Stable Transformation of Soybean Callus by DNA-Coated Gold Particles. Plant Physiology, 1988, 87, 671-674.	4.8	238
21	Critical evaluation of strategies for mineral fortification of staple food crops. Transgenic Research, 2010, 19, 165-180.	2.4	236
22	Transgenic strategies for the nutritional enhancement of plants. Trends in Plant Science, 2007, 12, 548-555.	8.8	232
23	Plantibodies: applications, advantages and bottlenecks. Current Opinion in Biotechnology, 2002, 13, 161-166.	6.6	208
24	Regulatory approval and a firstâ€inâ€human phase I clinical trial of a monoclonal antibody produced in transgenic tobacco plants. Plant Biotechnology Journal, 2015, 13, 1106-1120.	8.3	205
25	Progress in plant metabolic engineering. Current Opinion in Biotechnology, 2004, 15, 148-154.	6.6	201
26	Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns. Transgenic Research, 2000, 9, 11-19.	2.4	194
27	Title is missing!. Molecular Breeding, 2001, 7, 85-93.	2.1	192
28	When more is better: multigene engineering in plants. Trends in Plant Science, 2010, 15, 48-56.	8.8	187
29	Molecular characterization of transforming plasmid rearrangements in transgenic rice reveals a recombination hotspot in the CaMV 35S promoter and confirms the predominance of microhomology mediated recombination. Plant Journal, 1999, 17, 591-601.	5.7	177
30	Title is missing!. Molecular Breeding, 1999, 5, 65-73.	2.1	177
31	Genetic transformation of crop plants using microprojectile bombardment. Plant Journal, 1992, 2, 275-281.	5.7	173
32	Resistance to green leafhopper (Nephotettix virescens) and brown planthopper (Nilaparvata lugens) in transgenic rice expressing snowdrop lectin (Galanthus nivalis agglutinin; GNA). Journal of Insect Physiology, 2000, 46, 573-583.	2.0	167
33	Promoter diversity in multigene transformation. Plant Molecular Biology, 2010, 73, 363-378.	3.9	155
34	Cost-effective production of a vaginal protein microbicide to prevent HIV transmission. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3727-3732.	7.1	154
35	Travel advice on the road to carotenoids in plants. Plant Science, 2010, 179, 28-48.	3.6	151
36	The regulation of carotenoid pigmentation in flowers. Archives of Biochemistry and Biophysics, 2010, 504, 132-141.	3.0	149

#	Article	IF	CITATIONS
37	Practical considerations for pharmaceutical antibody production in different crop systems. Molecular Breeding, 2002, 9, 149-158.	2.1	142
38	Patterns of CRISPR/Cas9 activity in plants, animals and microbes. Plant Biotechnology Journal, 2016, 14, 2203-2216.	8.3	141
39	The potential of genetically enhanced plants to address food insecurity. Nutrition Research Reviews, 2004, 17, 23-42.	4.1	140
40	Transgene expression in rice engineered through particle bombardment: molecular factors controlling stable expression and transgene silencing. Planta, 1999, 208, 88-97.	3.2	139
41	Identification of carotenoids using mass spectrometry. Mass Spectrometry Reviews, 2014, 33, 353-372.	5.4	139
42	Potential Applications of Plant Biotechnology against SARS-CoV-2. Trends in Plant Science, 2020, 25, 635-643.	8.8	135
43	Soybean genetic engineering - commercial production of transgenic plants. Trends in Biotechnology, 1990, 8, 145-151.	9.3	134
44	Expression of an engineered cysteine proteinase inhibitor (Oryzacystatin-lî"D86) for nematode resistance in transgenic rice plants. Theoretical and Applied Genetics, 1998, 96, 266-271.	3.6	130
45	Over-expression of the oat arginine decarboxylase cDNA in transgenic rice (Oryza sativa L.) affects normal development patterns in vitro and results in putrescine accumulation in transgenic plants. Theoretical and Applied Genetics, 1998, 97, 246-254.	3.6	129
46	Transgenic Plants for Insect Pest Control: A Forward Looking Scientific Perspective. Transgenic Research, 2006, 15, 13-19.	2.4	127
47	The contribution of transgenic plants to better health through improved nutrition: opportunities and constraints. Genes and Nutrition, 2013, 8, 29-41.	2.5	122
48	Characteristics of Genome Editing Mutations in Cereal Crops. Trends in Plant Science, 2017, 22, 38-52.	8.8	122
49	Biosafety and risk assessment framework for selectable marker genes in transgenic crop plants: a case of the science not supporting the politics. Transgenic Research, 2007, 16, 261-280.	2.4	120
50	Nutritionally important carotenoids as consumer products. Phytochemistry Reviews, 2015, 14, 727-743.	6.5	118
51	Engineering Complex Metabolic Pathways in Plants. Annual Review of Plant Biology, 2014, 65, 187-223.	18.7	117
52	Strategies for variety-independent genetic transformation of important cereals, legumes and woody species utilizing particle bombardment. Euphytica, 1995, 85, 13-27.	1.2	116
53	Bottlenecks in carotenoid biosynthesis and accumulation in rice endosperm are influenced by the precursor–product balance. Plant Biotechnology Journal, 2016, 14, 195-205.	8.3	113
54	The genetic manipulation of medicinal and aromatic plants. Plant Cell Reports, 2007, 26, 1689-1715.	5.6	112

#	Article	IF	Citations
55	Constitutive expression of soybean ferritin cDNA in transgenic wheat and rice results in increased iron levels in vegetative tissues but not in seeds. Transgenic Research, 2000, 9, 445-452.	2.4	110
56	An alternative strategy for sustainable pest resistance in genetically enhanced crops. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7812-7816.	7.1	110
57	Rice cell culture as an alternative production system for functional diagnostic and therapeutic antibodies. Transgenic Research, 1999, 8, 441-449.	2.4	109
58	Title is missing!. , 1999, 5, 471-480.		107
59	Biofortification of plants with altered antioxidant content and composition: genetic engineering strategies. Plant Biotechnology Journal, 2013, 11, 129-141.	8.3	102
60	Transformation technology. Trends in Plant Science, 1996, 1, 423-431.	8.8	101
61	Unexpected Deposition Patterns of Recombinant Proteins in Post-Endoplasmic Reticulum Compartments of Wheat Endosperm. Plant Physiology, 2004, 136, 3457-3466.	4.8	101
62	Rice transformation: bombardment., 1997, 35, 197-203.		93
63	Matrix attachment regions increase transgene expression levels and stability in transgenic rice plants and their progeny. Plant Journal, 1999, 18, 233-242.	5.7	93
64	Title is missing!. Molecular Breeding, 1998, 4, 501-507.	2.1	91
65	Maize plants: An ideal production platform for effective and safe molecular pharming. Plant Science, 2008, 174, 409-419.	3.6	90
66	A golden eraâ€"pro-vitamin A enhancement in diverse crops. In Vitro Cellular and Developmental Biology - Plant, 2011, 47, 205-221.	2.1	90
67	The carotenoid cleavage dioxygenase <scp>CCD</scp> 2 catalysing the synthesis of crocetin in spring crocuses and saffron is a plastidial enzyme. New Phytologist, 2016, 209, 650-663.	7.3	88
68	Direct DNA transfer using electric discharge particle acceleration (ACCELLâ,,¢ technology). Plant Cell, Tissue and Organ Culture, 1993, 33, 227-236.	2.3	87
69	Nutritious crops producing multiple carotenoids – a metabolic balancing act. Trends in Plant Science, 2011, 16, 532-540.	8.8	84
70	Molecular Characteristics of Transgenic Wheat and the Effect on Transgene Expression. Transgenic Research, 1998, 7, 463-471.	2.4	83
71	Biofortification of crops with nutrients: factors affecting utilization and storage. Current Opinion in Biotechnology, 2017, 44, 115-123.	6.6	83
72	Biotechnology applied to grain legumes. Field Crops Research, 1997, 53, 83-97.	5.1	82

#	Article	IF	CITATIONS
73	Expression of Arabidopsis GAI in Transgenic Rice Represses Multiple Gibberellin Responses. Plant Cell, 2001, 13, 1791-1802.	6.6	82
74	Particle-bombardment-mediated co-transformation of elite Chinese rice cultivars with genes conferring resistance to bacterial blight and sap-sucking insect pests. Planta, 1999, 208, 552-563.	3.2	80
75	Metabolic engineering of ketocarotenoid biosynthesis in higher plants. Archives of Biochemistry and Biophysics, 2009, 483, 182-190.	3.0	80
76	The green fluorescent protein (GFP) as a vital screenable marker in rice transformation. Theoretical and Applied Genetics, 1998, 96, 164-169.	3. 6	79
77	Introns are key regulatory elements of rice tubulin expression. Planta, 2004, 218, 693-703.	3.2	79
78	Applications of multiplex genome editing in higher plants. Current Opinion in Biotechnology, 2019, 59, 93-102.	6.6	78
79	EU-OSTID: A Collection of Transposon Insertional Mutants for Functional Genomics in Rice. Plant Molecular Biology, 2005, 59, 99-110.	3.9	77
80	The Intracellular Fate of a Recombinant Protein Is Tissue Dependent. Plant Physiology, 2006, 141, 578-586.	4.8	77
81	Phytosiderophores determine thresholds for iron and zinc accumulation in biofortified rice endosperm while inhibiting the accumulation of cadmium. Journal of Experimental Botany, 2017, 68, 4983-4995.	4.8	77
82	The application of GMOs in agriculture and in food production for a better nutrition: two different scientific points of view. Genes and Nutrition, 2013, 8, 255-270.	2. 5	75
83	Recent Progress in Plantibody Technology. Current Pharmaceutical Design, 2005, 11, 2439-2457.	1.9	74
84	Recombinant plant-derived pharmaceutical proteins: current technical and economic bottlenecks. Biotechnology Letters, 2014, 36, 2367-2379.	2.2	74
85	Cotransformation frequencies of foreign genes in soybean cell cultures. Theoretical and Applied Genetics, 1990, 79, 337-341.	3.6	73
86	Expression and immunolocalisation of the snowdrop lectin, GNA in transgenic rice plants. Transgenic Research, 1998, 7, 371-378.	2.4	73
87	A recombinant multimeric immunoglobulin expressed in rice shows assembly-dependent subcellular localization in endosperm cells. Plant Biotechnology Journal, 2004, 3, 115-127.	8.3	73
88	Morphological Description of Transgenic Soybean Chimeras Created by the Delivery, Integration and Expression of Foreign DNA Using Electric Discharge Particle Acceleration. Annals of Botany, 1990, 66, 379-386.	2.9	72
89	Title is missing!. Molecular Breeding, 2002, 9, 231-244.	2.1	72
90	Title is missing!. Molecular Breeding, 2000, 6, 345-352.	2.1	71

#	Article	IF	Citations
91	Transformation of Plants with Multiple Cassettes Generates Simple Transgene Integration Patterns and High Expression Levels. Molecular Breeding, 2005, 16, 247-260.	2.1	71
92	Expression of Arabidopsis GAI in Transgenic Rice Represses Multiple Gibberellin Responses. Plant Cell, 2001, 13, 1791-1802.	6.6	71
93	Prediction of germ-line transformation events in chimeric Ro transgenic soybean plantlets using tissue-specific expression patterns. Plant Journal, 1992, 2, 283-290.	5.7	70
94	Pea Legumin Overexpressed in Wheat Endosperm Assembles into an Ordered Paracrystalline Matrix. Plant Physiology, 2001, 125, 1732-1742.	4.8	70
95	Trace and traceability—a call for regulatory harmony. Nature Biotechnology, 2008, 26, 975-978.	17.5	68
96	Going to ridiculous lengthsâ€"European coexistence regulations for GM crops. Nature Biotechnology, 2010, 28, 133-136.	17.5	68
97	Expression of a Heterologous S-Adenosylmethionine Decarboxylase cDNA in Plants Demonstrates That Changes inS-Adenosyl-I-Methionine Decarboxylase Activity Determine Levels of the Higher Polyamines Spermidine and Spermine. Plant Physiology, 2002, 129, 1744-1754.	4.8	66
98	Spermine facilitates recovery from drought but does not confer drought tolerance in transgenic rice plants expressing Datura stramonium S-adenosylmethionine decarboxylase. Plant Molecular Biology, 2009, 70, 253-264.	3.9	66
99	Widely separated multiple transgene integration sites in wheat chromosomes are brought together at interphase. Plant Journal, 2000, 24, 713-723.	5.7	66
100	Native and Artificial Reticuloplasmins Co-Accumulate in Distinct Domains of the Endoplasmic Reticulum and in Post-Endoplasmic Reticulum Compartments. Plant Physiology, 2001, 127, 1212-1223.	4.8	65
101	Combined transcript, proteome, and metabolite analysis of transgenic maize seeds engineered for enhanced carotenoid synthesis reveals pleotropic effects in core metabolism. Journal of Experimental Botany, 2015, 66, 3141-3150.	4.8	65
102	Transgenic rice plants expressing the ferredoxin-like protein (AP1) from sweet pepper show enhanced resistance to Xanthomonas oryzae pv. oryzae. Plant Science, 2001, 160, 1035-1042.	3.6	64
103	The development of a variety-independent gene-transfer method for rice. Trends in Biotechnology, 1992, 10, 239-246.	9.3	63
104	An <i>in vitro</i> system for the rapid functional characterization of genes involved in carotenoid biosynthesis and accumulation. Plant Journal, 2014, 77, 464-475.	5.7	63
105	The expression of heterologous Fe (<scp>III</scp>) phytosiderophore transporter <i>Hv<scp>YS</scp>1</i> in rice increases Fe uptake, translocation and seed loading and excludes heavy metals by selective Fe transport. Plant Biotechnology Journal, 2017, 15, 423-432.	8.3	63
106	Title is missing!. Transgenic Research, 1998, 7, 289-294.	2.4	61
107	The Quest to Understand the Basis and Mechanisms that Control Expression of Introduced Transgenes in Crop Plants. Plant Signaling and Behavior, 2006, 1, 185-195.	2.4	61
108	Nutritionally enhanced crops and food security: scientific achievements versus political expediency. Current Opinion in Biotechnology, 2011, 22, 245-251.	6.6	60

#	Article	IF	CITATIONS
109	Transposon Insertional Mutagenesis in Rice. Plant Physiology, 2001, 125, 1175-1177.	4.8	58
110	Rice endosperm produces an underglycosylated and potent form of the <scp>HIV</scp> â€neutralizing monoclonal antibody 2G12. Plant Biotechnology Journal, 2016, 14, 97-108.	8.3	58
111	Metabolic Engineering of Plant Secondary Products: Which Way Forward?. Current Pharmaceutical Design, 2013, 19, 5622-5639.	1.9	58
112	Realising the value of plant molecular pharming to benefit the poor in developing countries and emerging economies. Plant Biotechnology Journal, 2013, 11, 1029-1033.	8.3	57
113	Paradoxical EU agricultural policies on genetically engineered crops. Trends in Plant Science, 2013, 18, 312-324.	8.8	57
114	Molecular pharming in cereal crops. Phytochemistry Reviews, 2008, 7, 579-592.	6.5	56
115	The humanitarian impact of plant biotechnology: recent breakthroughs vs bottlenecks for adoption. Current Opinion in Plant Biology, 2010, 13, 219-225.	7.1	56
116	Plurality of opinion, scientific discourse and pseudoscience: an in depth analysis of the Séralini et al. study claiming that Roundupâ,, $\$ Ready corn or the herbicide Roundupâ,, $\$ cause cancer in rats. Transgenic Research, 2013, 22, 255-267.	2.4	55
117	Plant Cells as Pharmaceutical Factories. Current Pharmaceutical Design, 2013, 19, 5640-5660.	1.9	55
118	The distribution of carotenoids in hens fed on biofortified maize is influenced by feed composition, absorption, resource allocation and storage. Scientific Reports, 2016, 6, 35346.	3.3	53
119	Transgenic rice as a system to study the stability of transgene expression: multiple heterologous transgenes show similar behaviour in diverse genetic backgrounds. Theoretical and Applied Genetics, 2000, 101, 388-399.	3.6	51
120	Cell type specific expression of a CaMV 35S-GUS gene in transgenic soybean plants. Genesis, 1990, 11, 289-293.	2.1	50
121	Particle gun mediated transformation. Current Opinion in Biotechnology, 1993, 4, 135-141.	6.6	49
122	Cloning and functional characterization of the maize carotenoid isomerase and \hat{l}^2 -carotene hydroxylase genes and their regulation during endosperm maturation. Transgenic Research, 2010, 19, 1053-1068.	2.4	49
123	Expression of two consecutive genes of a secondary metabolic pathway in transgenic tobacco: molecular diversity influences levels of expression and product accumulation. Plant Molecular Biology, 1998, 38, 765-774.	3.9	48
124	Functional expression of tropinone reductase I (trl) and hyoscyamine-6β-hydroxylase (h6h) from Hyoscyamus niger in Nicotiana tabacum. Plant Science, 2002, 162, 905-913.	3.6	48
125	High-value products from transgenic maize. Biotechnology Advances, 2011, 29, 40-53.	11.7	48
126	The potential impact of plant biotechnology on the Millennium Development Goals. Plant Cell Reports, 2011, 30, 249-265.	5.6	47

#	Article	lF	CITATIONS
127	Iron and Zinc in the Embryo and Endosperm of Rice (Oryza sativa L.) Seeds in Contrasting 2′-Deoxymugineic Acid/Nicotianamine Scenarios. Frontiers in Plant Science, 2018, 9, 1190.	3.6	47
128	Synergistic metabolism in hybrid corn indicates bottlenecks in the carotenoid pathway and leads to the accumulation of extraordinary levels of the nutritionally important carotenoid zeaxanthin. Plant Biotechnology Journal, 2011, 9, 384-393.	8.3	46
129	Genome editing in cereal crops: an overview. Transgenic Research, 2021, 30, 461-498.	2.4	46
130	Transgenic and genome-edited fruits: background, constraints, benefits, and commercial opportunities. Horticulture Research, 2021, 8, 166.	6.3	46
131	Overexpression of the calcium-dependent protein kinase OsCDPK2 in transgenic rice is repressed by light in leaves and disrupts seed development. Transgenic Research, 2000, 9, 453-462.	2.4	45
132	CRISPR/Cas9 activity in the rice OsBEIIb gene does not induce off-target effects in the closely related paralog OsBEIIa. Molecular Breeding, 2016 , 36 , 1 .	2.1	45
133	CRISPR/Cas9 mutations in the rice Waxy/GBSSI gene induce allele-specific and zygosity-dependent feedback effects on endosperm starch biosynthesis. Plant Cell Reports, 2019, 38, 417-433.	5.6	45
134	Inactivation of rice starch branching enzyme IIb triggers broad and unexpected changes in metabolism by transcriptional reprogramming. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26503-26512.	7.1	45
135	Transgenic Central American, West African and Asian Elite Rice Varieties Resulting from Particle Bombardment of Foreign DNA into Mature Seed-derived Explants Utilizing Three Different Bombardment Devices. Annals of Botany, 1998, 82, 795-801.	2.9	44
136	Constitutive versus seed specific expression in transgenic wheat: temporal and spatial control. Transgenic Research, 1999, 8, 73-82.	2.4	44
137	Metabolic engineering of astaxanthin biosynthesis in maize endosperm and characterization of a prototype high oil hybrid. Transgenic Research, 2016, 25, 477-489.	2.4	44
138	Contributions of the international plant science community to the fight against human infectious diseases – part 1: epidemic and pandemic diseases. Plant Biotechnology Journal, 2021, 19, 1901-1920.	8.3	44
139	Knowledge-driven approaches for engineering complex metabolic pathways in plants. Current Opinion in Biotechnology, 2015, 32, 54-60.	6.6	43
140	Opine Synthesis in Wild-Type Plant Tissue. Plant Physiology, 1986, 82, 218-221.	4.8	42
141	Title is missing!. Molecular Breeding, 1998, 4, 99-109.	2.1	42
142	Simultaneous expression of Arabidopsis ihydroxyphenylpyruvate dioxygenase and MPBQ methyltransferase in transgenic corn kernels triples the tocopherol content. Transgenic Research, 2011, 20, 177-181.	2.4	42
143	The biotechnology of crop legumes. Euphytica, 1994, 74-74, 165-185.	1.2	40
144	The impact of selection parameters on the phenotype and genotype of transgenic rice callus and plants. Transgenic Research, 1995, 4, 44-51.	2.4	40

#	Article	IF	Citations
145	No Credible Scientific Evidence is Presented to Support Claims that Transgenic DNA was Introgressed into Traditional Maize Landraces in Oaxaca, Mexico. Transgenic Research, 2002, 11, 3-5.	2.4	40
146	Rice endosperm is costâ€effective for the production of recombinant griffithsin with potent activity against HIV. Plant Biotechnology Journal, 2016, 14, 1427-1437.	8.3	40
147	EU legitimizes GM crop exclusion zones. Nature Biotechnology, 2011, 29, 315-317.	17.5	39
148	Plant genetic engineering and agricultural biotechnology 1983–2013. Trends in Biotechnology, 2013, 31, 125-127.	9.3	39
149	Transgenic rice grains expressing a heterologous \hat{l} -hydroxyphenylpyruvate dioxygenase shift tocopherol synthesis from the \hat{l}^3 to the $\hat{l}\pm$ isoform without increasing absolute tocopherol levels. Transgenic Research, 2012, 21, 1093-1097.	2.4	38
150	Engineering metabolic pathways in plants by multigene transformation. International Journal of Developmental Biology, 2013, 57, 565-576.	0.6	38
151	The Arabidopsis ORANGE (AtOR) gene promotes carotenoid accumulation in transgenic corn hybrids derived from parental lines with limited carotenoid pools. Plant Cell Reports, 2017, 36, 933-945.	5.6	38
152	Promoter strength influences polyamine metabolism and morphogenic capacity in transgenic rice tissues expressing the oat adc cDNA constitutively. Transgenic Research, 2000, 9, 33-42.	2.4	36
153	Carotenoidâ€enriched transgenic corn delivers bioavailable carotenoids to poultry and protects them against coccidiosis. Plant Biotechnology Journal, 2016, 14, 160-168.	8.3	36
154	Enhanced insect resistance in Thai rice varieties generated by particle bombardment. Molecular Breeding, 2000, 6, 391-399.	2.1	35
155	Over-expression of a cDNA for human ornithine decarboxylase in transgenic rice plants alters the polyamine pool in a tissue-specific manner. Molecular Genetics and Genomics, 2001, 266, 303-312.	2.1	35
156	Overexpression of the wheat FK506-binding protein 73 (FKBP73) and the heat-induced wheat FKBP77 in transgenic wheat reveals different functions of the two isoforms. Transgenic Research, 2002, 11, 373-379.	2.4	33
157	Calling the tunes on transgenic crops: the case for regulatory harmony. Molecular Breeding, 2009, 23, 99-112.	2.1	33
158	Constitutive expression of a barley Fe phytosiderophore transporter increases alkaline soil tolerance and results in iron partitioning between vegetative and storage tissues under stress. Plant Physiology and Biochemistry, 2012, 53, 46-53.	5.8	33
159	Rice transformation: bombardment. , 1997, , 197-203.		33
160	Seeds as a Production System for Molecular Pharming Applications: Status and Prospects. Current Pharmaceutical Design, 2013, 19, 5543-5552.	1.9	32
161	Development of an efficient transformation system for Catharanthus roseus cell cultures using particle bombardment. Plant Science, 1999, 140, 179-188.	3.6	31
162	A transgenic rice cell lineage expressing the oat arginine decarboxylase (adc) cDNA constitutively accumulates putrescine in callus and seeds but not in vegetative tissues. Plant Molecular Biology, 2000, 43, 537-544.	3.9	31

#	Article	IF	Citations
163	Contributions of the international plant science community to the fight against infectious diseases in humans—part 2: Affordable drugs in edible plants for endemic and reâ€emerging diseases. Plant Biotechnology Journal, 2021, 19, 1921-1936.	8.3	31
164	Cytokinin Antagonist Activity of Substituted Phenethylamines in Plant Cell Culture. Plant Physiology, 1989, 89, 564-568.	4.8	29
165	Deletion of the C-terminal 138 amino acids of the wheat FKBP73 abrogates calmodulin binding, dimerization and male fertility in transgenic rice. Plant Molecular Biology, 2002, 48, 369-381.	3.9	29
166	Developmental Aspects of Soybean (Glycine max) Somatic Embryogenesis. Annals of Botany, 1989, 64, 225-234.	2.9	28
167	Building bridges: an integrated strategy for sustainable food production throughout the value chain. Molecular Breeding, 2013, 32, 743-770.	2.1	28
168	Unexpected synergistic HIV neutralization by a triple microbicide produced in rice endosperm. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7854-E7862.	7.1	28
169	A simplified technoâ€economic model for the molecular pharming of antibodies. Biotechnology and Bioengineering, 2019, 116, 2526-2539.	3.3	28
170	Targeted transcriptomic and metabolic profiling reveals temporal bottlenecks in the maize carotenoid pathway that may be addressed by multigene engineering. Plant Journal, 2013, 75, 441-455.	5.7	27
171	Fast Quantitative Method for the Analysis of Carotenoids in Transgenic Maize. Journal of Agricultural and Food Chemistry, 2013, 61, 5279-5285.	5.2	27
172	Strategies for variety-independent genetic transformation of important cereals, legumes and woody species utilizing particle bombardment. Developments in Plant Breeding, 1995, , 13-27.	0.2	26
173	Tagged Transcriptome Display (TTD) in indica rice using Ac transposition. Molecular Genetics and Genomics, 2001, 266, 1-11.	2.1	25
174	Reduction in the endogenous arginine decarboxylase transcript levels in rice leads to depletion of the putrescine and spermidine pools with no concomitant changes in the expression of downstream genes in the polyamine biosynthetic pathway. Planta, 2003, 218, 125-134.	3.2	25
175	Chapter 27 Particle Bombardment. Methods in Cell Biology, 1995, 50, 375-382.	1.1	24
176	The maize streak virus coat protein transcription unit exhibits tissue-specific expression in transgenic rice. Plant Science, 2000, 155, 21-29.	3.6	24
177	Field trials and tribulations—making sense of the regulations for experimental field trials of transgenic crops in Europe. Plant Biotechnology Journal, 2012, 10, 511-523.	8.3	24
178	Large-scale chromatin decondensation induced in a developmentally activated transgene locus. Journal of Cell Science, 2005, 118, 1021-1031.	2.0	22
179	Foreign DNA: Integration and Expression in Transgenic Plants. , 2002, 24, 107-136.		22
180	Recovery of Chimeric Rice Plants from Dry Seed using Electric Discharge Particle Acceleration. Annals of Botany, 1995, 75, 449-454.	2.9	21

#	Article	IF	CITATIONS
181	Transgenic wheat plants expressing an oat arginine decarboxylase cDNA exhibit increases in polyamine content in vegetative tissue and seeds. Molecular Breeding, 2008, 22, 39-50.	2.1	21
182	Reconstruction of the astaxanthin biosynthesis pathway in rice endosperm reveals a metabolic bottleneck at the level of endogenous \hat{l}^2 -carotene hydroxylase activity. Transgenic Research, 2017, 26, 13-23.	2.4	21
183	A question of balance: achieving appropriate nutrient levels in biofortified staple crops. Nutrition Research Reviews, 2013, 26, 235-245.	4.1	20
184	Cloning and functional analysis of the promoters that upregulate carotenogenic gene expression during flower development in <i>Gentiana lutea</i> <. Physiologia Plantarum, 2014, 150, 493-504.	5.2	20
185	Engineered maize as a source of astaxanthin: processing and application as fish feed. Transgenic Research, 2016, 25, 785-793.	2.4	20
186	The Silencing of Carotenoid \hat{l}^2 -Hydroxylases by RNA Interference in Different Maize Genetic Backgrounds Increases the \hat{l}^2 -Carotene Content of the Endosperm. International Journal of Molecular Sciences, 2017, 18, 2515.	4.1	20
187	Zm <scp>PBF</scp> and Zm <scp>GAMYB</scp> transcription factors independently transactivate the promoter of the maize (<i>Zea mays</i>) βâ€carotene hydroxylase 2 gene. New Phytologist, 2019, 222, 793-804.	7.3	20
188	Parameters Influencing Stable Transformation of Rice Immature Embryos and Recovery of Transgenic Plants using Electric Discharge Particle Acceleration. Annals of Botany, 1995, 75, 407-413.	2.9	19
189	Can the world afford to ignore biotechnology solutions that address food insecurity?. Plant Molecular Biology, 2013, 83, 5-19.	3.9	19
190	Modification of cereal plant architecture by genome editing to improve yields. Plant Cell Reports, 2021, 40, 953-978.	5.6	18
191	Transgenic Rice as a Vehicle for the Production of the Industrial Enzyme Transglutaminase. Transgenic Research, 2004, 13, 195-199.	2.4	17
192	Abscisic acid and the herbicide safener cyprosulfamide cooperatively enhance abiotic stress tolerance in rice. Molecular Breeding, 2013, 32, 463-484.	2.1	17
193	A novel carotenoid, 4-keto-î±-carotene, as an unexpected by-product during genetic engineering of carotenogenesis in rice callus. Phytochemistry, 2014, 98, 85-91.	2.9	17
194	Fruit crops in the era of genome editing: closing the regulatory gap. Plant Cell Reports, 2021, 40, 915-930.	5.6	17
195	Philosophy and practice of variety-independent gene transfer into recalcitrant crops. In Vitro Cellular and Developmental Biology - Plant, 1993, 29, 119-124.	2.1	16
196	Functional characterization of the Gentiana lutea zeaxanthin epoxidase (GIZEP) promoter in transgenic tomato plants. Transgenic Research, 2012, 21, 1043-1056.	2.4	16
197	Combinatorial Genetic Transformation of Cereals and the Creation of Metabolic Libraries for the Carotenoid Pathway. Methods in Molecular Biology, 2012, 847, 419-435.	0.9	16
198	Ascorbic acid synthesis and metabolism in maize are subject to complex and genotypeâ€dependent feedback regulation during endosperm development. Biotechnology Journal, 2013, 8, 1221-1230.	3.5	16

#	Article	IF	Citations
199	Recognition motifs rather than phylogenetic origin influence the ability of targeting peptides to import nuclear-encoded recombinant proteins into rice mitochondria. Transgenic Research, 2020, 29, 37-52.	2.4	16
200	Metabolic Engineering of Crocin Biosynthesis in Nicotiana Species. Frontiers in Plant Science, 2022, 13, 861140.	3.6	16
201	Habituation in in Vitro Soybean Cultures. Plant Physiology, 1988, 87, 809-812.	4.8	15
202	Can Microbicides Turn the Tide Against HIV?. Current Pharmaceutical Design, 2010, 16, 468-485.	1.9	15
203	Mice fed on a diet enriched with genetically engineered multivitamin corn show no subâ€acute toxic effects and no subâ€chronic toxicity. Plant Biotechnology Journal, 2012, 10, 1026-1034.	8.3	15
204	Stable transgenes bear fruit. Nature Biotechnology, 2008, 26, 653-654.	17.5	14
205	Transcriptional regulation of the rice arginine decarboxylase (Adc1) and S-adenosylmethionine decarboxylase (Samdc) genes by methyl jasmonate. Plant Physiology and Biochemistry, 2010, 48, 553-559.	5.8	14
206	The subcellular localization of two isopentenyl diphosphate isomerases in rice suggests a role for the endoplasmic reticulum in isoprenoid biosynthesis. Plant Cell Reports, 2020, 39, 119-133.	5.6	14
207	Soybean transformation by electric discharge particle acceleration. Physiologia Plantarum, 1990, 79, 210-212.	5.2	13
208	Regeneration of Lonicera tatarica plants via adventitious organogenesis from cultured stem explants. Plant Cell Reports, 2002, 20, 808-813.	5.6	13
209	Functional characterization of the recombinant HIV-neutralizing monoclonal antibody 2F5 produced in maize seeds. Plant Molecular Biology, 2012, 80, 477-488.	3.9	13
210	Genome editing in fruit, ornamental, and industrial crops. Transgenic Research, 2021, 30, 499-528.	2.4	13
211	Transformation of the tropane alkaloid-producing medicinal plant Hyoscyamus muticus by particle bombardment. Transgenic Research, 2000, 9, 163-168.	2.4	12
212	Antibody Production in Transgenic Plants. , 2004, 248, 301-318.		12
213	Plant biotechnology: the importance of being accurate. Trends in Biotechnology, 2009, 27, 609-612.	9.3	12
214	Molecular characterization of the Arginine decarboxylase gene family in rice. Transgenic Research, 2010, 19, 785-797.	2.4	12
215	A carotenogenic mini-pathway introduced into white corn does not affect development or agronomic performance. Scientific Reports, 2016, 6, 38288.	3.3	12
216	Expression of legumin and vicilin genes in pea mutants and the production of legumin in transgenic plants. Molecular Nutrition and Food Research, 2001, 45, 385.	0.0	10

#	Article	IF	Citations
217	Dedifferentiation-mediated changes in transposition behavior make the Activator transposon an ideal tool for functional genomics in rice. Molecular Breeding, 2004, 13, 177-191.	2.1	10
218	Strategic patent analysis in plant biotechnology: terpenoid indole alkaloid metabolic engineering as a case study. Plant Biotechnology Journal, 2014, 12, 117-134.	8.3	10
219	Can plant biotechnology help break the HIV–malaria link?. Biotechnology Advances, 2014, 32, 575-582.	11.7	10
220	CRISPR/Cas9-induced monoallelic mutations in the cytosolic AGPase large subunit gene APL2 induce the ectopic expression of APL2 and the corresponding small subunit gene APS2b in rice leaves. Transgenic Research, 2018, 27, 423-439.	2.4	10
221	Genetic Transformation of Plants and Their Cells. , 2002, , .		9
222	Endogenous enzyme activities and polyamine levels in diverse rice cultivars depend on the genetic background and are not affected by the presence of the hygromycin phosphotransferase selectable marker. Theoretical and Applied Genetics, 2002, 105, 594-603.	3.6	9
223	Freedomâ€toâ€operate analysis of a transgenic multivitamin corn variety. Plant Biotechnology Journal, 2016, 14, 1225-1240.	8.3	9
224	Identification of lineâ€specific strategies for improving carotenoid production in synthetic maize through dataâ€driven mathematical modeling. Plant Journal, 2016, 87, 455-471.	5.7	9
225	Carotenoids moderate the effectiveness of a Bt gene against the European corn borer, Ostrinia nubilalis. PLoS ONE, 2018, 13, e0199317.	2.5	9
226	The ratio of phytosiderophores nicotianamine to deoxymugenic acid controls metal homeostasis in rice. Planta, 2019, 250, 1339-1354.	3.2	9
227	Transgenic cell lines as a useful tool to study the biochemistry of down-regulation of an endogenous rice gene using a heterologous diamine-oxidase cDNA. Plant Physiology and Biochemistry, 2000, 38, 729-737.	5.8	7
228	Efficient recovery of recombinant proteins from cereal endosperm is affected by interaction with endogenous storage proteins. Biotechnology Journal, 2013, 8, 1203-1212.	3.5	7
229	Development of a novel gene transfer system for Cajanus cajan and expression of a monocot arginine decarboxylase cDNA in transformed cell lines. Plant Physiology and Biochemistry, 2001, 39, 575-582.	5.8	6
230	Editorial (Hot Topic: From Medicinal Plants to Medicines in Plants: Plant Factories for the Production) Tj ETQq0 C	O rgBT /O	verlock 10 Tf
231	Oral intake of genetically engineered high-carotenoid corn ameliorates hepatomegaly and hepatic steatosis in PTEN haploinsufficient mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 526-535.	3.8	6
232	Transit Peptides From Photosynthesis-Related Proteins Mediate Import of a Marker Protein Into Different Plastid Types and Within Different Species. Frontiers in Plant Science, 2020, 11, 560701.	3.6	6
233	Native and Artificial Reticuloplasmins Co-Accumulate in Distinct Domains of the Endoplasmic Reticulum and in Post-Endoplasmic Reticulum Compartments. Plant Physiology, 2001, 127, 1212-1223.	4.8	6
234	Detection of opines by colorimetric assay. Analytical Biochemistry, 1987, 160, 342-345.	2.4	5

#	Article	IF	Citations
235	Electric discharge particle acceleration (Accell \hat{A}^{\otimes}) technology for the creation of transgenic plants with altered characteristics. Field Crops Research, 1996, 45, 143-151.	5.1	5
236	Widely separated multiple transgene integration sites in wheat chromosomes are brought together at interphase. Plant Journal, 2000, 24, 713-723.	5.7	5
237	Plant Transformation Technology: Particle Bombardment. , 0, , .		5
238	Gene transfer to plants via particle bombardment. , 1994, , 17-31.		5
239	Cloning and Functional Characterization of the Maize (Zea mays L.) Carotenoid Epsilon Hydroxylase Gene. PLoS ONE, 2015, 10, e0128758.	2.5	5
240	The Biosynthesis of Non-Endogenous Apocarotenoids in Transgenic Nicotiana glauca. Metabolites, 2022, 12, 575.	2.9	5
241	Chemical conversion of aflatoxin B1 to M1. Phytochemistry, 1985, 24, 933-935.	2.9	4
242	\hat{l}^2 -carotene and Bacillus thuringiensis insecticidal protein differentially modulate feeding behaviour, mortality and physiology of European corn borer (Ostrinia nubilalis). PLoS ONE, 2021, 16, e0246696.	2.5	4
243	Multilevel interactions between native and ectopic isoprenoid pathways affect global metabolism in rice. Transgenic Research, 2022, 31, 249-268.	2.4	4
244	Monocot Expression Systems for Molecular Farming., 2005,, 55-67.		3
245	The Coordinated Upregulated Expression of Genes Involved in MEP, Chlorophyll, Carotenoid and Tocopherol Pathways, Mirrored the Corresponding Metabolite Contents in Rice Leaves during De-Etiolation. Plants, 2021, 10, 1456.	3.5	3
246	Transgenic Multivitamin Biofortified Corn: Science, Regulation, and Politics., 2013,, 335-347.		3
247	Physicochemical characterization of the recombinant lectin scytovirin and microbicidal activity of the SD1 domain produced in rice against HIV-1. Plant Cell Reports, 2022, , 1.	5.6	3
248	Engineered Maize Hybrids with Diverse Carotenoid Profiles and Potential Applications in Animal Feeding. Advances in Experimental Medicine and Biology, 2021, 1261, 95-113.	1.6	2
249	Preface: Genome editing in plants. Transgenic Research, 2021, 30, 317-320.	2.4	2
250	Increasing the vitamin E content of food by in-plant production CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-10.	1.0	2
251	Expression of Arabidopsis GAI in Transgenic Rice Represses Multiple Gibberellin Responses. Plant Cell, 2001, 13, 1791.	6.6	1
252	Nitrogen inputs influence vegetative metabolism in maize engineered with a seed-specific carotenoid pathway. Plant Cell Reports, 2021, 40, 899-911.	5.6	1

#	Article	IF	CITATIONS
253	Cereals., 1998,, 228-249.		1
254	Development of a facile genetic transformation system for the Spanish elite rice paella genotype Bomba. Transgenic Research, 2022, 31, 325-340.	2.4	1
255	Genetic Engineering Of Plant Secondary Metabolism Using Particle Bombardment. Biochemical Society Transactions, 1999, 27, A15-A15.	3.4	0
256	Frontiers in transgenic research. , 2000, 9, 241-242.		0
257	Commentary on Brown/Michaels' review. Transgenic Research, 2001, 10, 277-277.	2.4	0
258	Transgenic research advances disease understanding leading to new intervention strategies. Transgenic Research, 2002, 11 , $543-544$.	2.4	0
259	Molecular regulation and biotechnology of carotenoid accumulation in flowers. Journal of Biotechnology, 2008, 136, S239-S240.	3.8	0
260	Introduction: Plant-Produced Protein Products. Biotechnology in Agriculture and Forestry, 2014, , 1-11.	0.2	0
261	Introduction to Plant Genetic Modification: Gene Isolation. , 0, , .		O