
## Nick W Albert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6501141/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Flavonoids – flowers, fruit, forage and the future. Journal of the Royal Society of New Zealand, 2023, 53, 304-331.                                                                                                                                 | 1.9 | 9         |
| 2  | A chromosomeâ€scale assembly of the bilberry genome identifies a complex locus controlling berry anthocyanin composition. Molecular Ecology Resources, 2022, 22, 345-360.                                                                           | 4.8 | 28        |
| 3  | Hierarchical regulation of <i>MYBPA1</i> by anthocyanin- and proanthocyanidin-related MYB proteins is conserved in <i>Vaccinium</i> species. Journal of Experimental Botany, 2022, 73, 1344-1356.                                                   | 4.8 | 20        |
| 4  | Stress, senescence and specialised metabolites in bryophytes. Journal of Experimental Botany, 2022, , .                                                                                                                                             | 4.8 | 11        |
| 5  | Discrete bHLH transcription factors play functionally overlapping roles in pigmentation patterning in flowers of <i>Antirrhinum majus</i> . New Phytologist, 2021, 231, 849-863.                                                                    | 7.3 | 28        |
| 6  | MYBA and MYBPA transcription factors coâ€regulate anthocyanin biosynthesis in blue oloured berries.<br>New Phytologist, 2021, 232, 1350-1367.                                                                                                       | 7.3 | 56        |
| 7  | Identification of a Strong Anthocyanin Activator, VbMYBA, From Berries of Vaccinium bracteatum<br>Thunb Frontiers in Plant Science, 2021, 12, 697212.                                                                                               | 3.6 | 7         |
| 8  | CRISPR-Cas9 enrichment and long read sequencing for fine mapping in plants. Plant Methods, 2020, 16, 121.                                                                                                                                           | 4.3 | 31        |
| 9  | The Evolution of Flavonoid Biosynthesis: A Bryophyte Perspective. Frontiers in Plant Science, 2020, 11,<br>7.                                                                                                                                       | 3.6 | 126       |
| 10 | Spatiotemporal Modulation of Flavonoid Metabolism in Blueberries. Frontiers in Plant Science, 2020, 11, 545.                                                                                                                                        | 3.6 | 42        |
| 11 | Auronidins are a previously unreported class of flavonoid pigments that challenges when<br>anthocyanin biosynthesis evolved in plants. Proceedings of the National Academy of Sciences of the<br>United States of America, 2019, 116, 20232-20239.  | 7.1 | 63        |
| 12 | Genetic analysis of the liverwort <i>Marchantia polymorpha</i> reveals that R2R3 <scp>MYB</scp><br>activation of flavonoid production in response to abiotic stress is an ancient character in land<br>plants. New Phytologist, 2018, 218, 554-566. | 7.3 | 98        |
| 13 | MYBA From Blueberry (Vaccinium Section Cyanococcus) Is a Subgroup 6 Type R2R3MYB Transcription Factor That Activates Anthocyanin Production. Frontiers in Plant Science, 2018, 9, 1300.                                                             | 3.6 | 55        |
| 14 | UVR8â€mediated induction of flavonoid biosynthesis for UVB tolerance is conserved between the<br>liverwort <i>Marchantia polymorpha</i> and flowering plants. Plant Journal, 2018, 96, 503-517.                                                     | 5.7 | 93        |
| 15 | Aromatic Decoration Determines the Formation of Anthocyanic Vacuolar Inclusions. Current Biology, 2017, 27, 945-957.                                                                                                                                | 3.9 | 49        |
| 16 | The Onion (Allium cepa L.) R2R3-MYB Gene MYB1 Regulates Anthocyanin Biosynthesis. Frontiers in Plant<br>Science, 2016, 7, 1865.                                                                                                                     | 3.6 | 91        |
| 17 | Infiltration-RNAseq: transcriptome profiling of Agrobacterium-mediated infiltration of transcription factors to discover gene function and expression networks in plants. Plant Methods, 2016, 12, 41.                                              | 4.3 | 26        |
| 18 | Control of anthocyanin pigmentation during flower development inCymbidiumorchid. Acta<br>Horticulturae, 2015, , 333-340.                                                                                                                            | 0.2 | 4         |

NICK W ALBERT

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Subspecialization of R2R3-MYB Repressors for Anthocyanin and Proanthocyanidin Regulation in Forage Legumes. Frontiers in Plant Science, 2015, 6, 1165.                                                                      | 3.6 | 70        |
| 20 | Failure to launch: the self-regulating Md-MYB10 R6 gene from apple is active in flowers but not leaves of Petunia. Plant Cell Reports, 2015, 34, 1817-1823.                                                                 | 5.6 | 11        |
| 21 | Anthocyanin leaf markings are regulated by a family of <i>R2R3â€MYB</i> genes in the genus<br><i><scp>T</scp>rifolium</i> . New Phytologist, 2015, 205, 882-893.                                                            | 7.3 | 62        |
| 22 | Gene regulation networks generate diverse pigmentation patterns in plants. Plant Signaling and Behavior, 2014, 9, e29526.                                                                                                   | 2.4 | 58        |
| 23 | A Conserved Network of Transcriptional Activators and Repressors Regulates Anthocyanin<br>Pigmentation in Eudicots. Plant Cell, 2014, 26, 962-980.                                                                          | 6.6 | 610       |
| 24 | Temporal and spatial regulation of anthocyanin biosynthesis provide diverse flower colour intensities and patterning in Cymbidium orchid. Planta, 2014, 240, 983-1002.                                                      | 3.2 | 39        |
| 25 | REPRESSION - THE DARK SIDE OF ANTHOCYANIN REGULATION?. Acta Horticulturae, 2014, , 129-136.                                                                                                                                 | 0.2 | 9         |
| 26 | From landing lights to mimicry: the molecular regulation of flower colouration and mechanisms for pigmentation patterning. Functional Plant Biology, 2012, 39, 619.                                                         | 2.1 | 263       |
| 27 | Genotypic variation in sulfur assimilation and metabolism of onion (Allium cepa L.) III.<br>Characterization of sulfite reductase. Phytochemistry, 2012, 83, 34-42.                                                         | 2.9 | 10        |
| 28 | LONG-TERM STABLE EXPRESSION OF MULTIPLE TRANSGENES UNDER CONTROL OF THE SAME PROMOTER IN CYMBIDIUM ORCHID. Acta Horticulturae, 2012, , 597-604.                                                                             | 0.2 | 1         |
| 29 | Epigenetics in plants—vernalisation and hybrid vigour. Biochimica Et Biophysica Acta - Gene Regulatory<br>Mechanisms, 2011, 1809, 427-437.                                                                                  | 1.9 | 61        |
| 30 | Members of an R2R3â€MYB transcription factor family in <i>Petunia</i> are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning. Plant Journal, 2011, 65, 771-784. | 5.7 | 401       |
| 31 | Changes in 1-aminocyclopropane-1-carboxlate (ACC) oxidase expression and enzyme activity in response to excess manganese in white clover (Trifolium repens L.). Plant Physiology and Biochemistry, 2011, 49, 1013-1019.     | 5.8 | 15        |
| 32 | Genotypic variation in sulphur assimilation and metabolism of onion (Allium cepa L.). II:<br>Characterisation of ATP sulphurylase activity. Phytochemistry, 2011, 72, 888-896.                                              | 2.9 | 8         |
| 33 | Activation of anthocyanin synthesis in Cymbidium orchids: variability between known regulators.<br>Plant Cell, Tissue and Organ Culture, 2010, 100, 355-360.                                                                | 2.3 | 36        |
| 34 | Whole genome sequencing of enriched chloroplast DNA using the Illumina GAII platform. Plant<br>Methods, 2010, 6, 22.                                                                                                        | 4.3 | 67        |
| 35 | Light-induced vegetative anthocyanin pigmentation in Petunia. Journal of Experimental Botany, 2009,<br>60, 2191-2202.                                                                                                       | 4.8 | 256       |
|    |                                                                                                                                                                                                                             |     |           |

Transformation and Regeneration of Petunia. , 2009, , 395-409.

| #  | Article                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The Coordinated Action of MYB Activators and Repressors Controls Proanthocyanidin and Anthocyanin Biosynthesis in Vaccinium. Frontiers in Plant Science, 0, 13, . | 3.6 | 8         |