
## Li-xi Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6500919/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The genome and gene editing system of sea barleygrass provideÂa novel platform for cereal domestication and stress tolerance studies. Plant Communications, 2022, 3, 100333.                                                                                   | 7.7  | 8         |
| 2  | Construction of a worldwide core collection of rapeseed and association analysis for waterlogging tolerance. Plant Growth Regulation, 2022, 98, 321-328.                                                                                                       | 3.4  | 5         |
| 3  | Creation of maleâ€sterile lines that can be restored to fertility by exogenous methyl jasmonate for the<br>establishment of a twoâ€line system for the hybrid production of rice ( <i>Oryza sativa</i> L.). Plant<br>Biotechnology Journal, 2021, 19, 365-374. | 8.3  | 17        |
| 4  | BnaGVD: A Genomic Variation Database of Rapeseed (Brassica napus). Plant and Cell Physiology, 2021, 62, 378-383.                                                                                                                                               | 3.1  | 9         |
| 5  | Modelling of gene loss propensity in the pangenomes of three <i>Brassica</i> species suggests different mechanisms between polyploids and diploids. Plant Biotechnology Journal, 2021, 19, 2488-2500.                                                          | 8.3  | 44        |
| 6  | Genome-wide association study reveals a patatin-like lipase relating to the reduction of seed oil content in Brassica napus. BMC Plant Biology, 2021, 21, 6.                                                                                                   | 3.6  | 11        |
| 7  | Prediction of heterosis in the recent rapeseed (Brassica napus) polyploid by pairing parental nucleotide sequences. PLoS Genetics, 2021, 17, e1009879.                                                                                                         | 3.5  | 8         |
| 8  | Evolutionary Analysis of the YABBY Gene Family in Brassicaceae. Plants, 2021, 10, 2700.                                                                                                                                                                        | 3.5  | 3         |
| 9  | The HKT Transporter HvHKT1;5 Negatively Regulates Salt Tolerance. Plant Physiology, 2020, 182, 584-596.                                                                                                                                                        | 4.8  | 57        |
| 10 | Genomeâ€wide association study reveals new genes involved in leaf trichome formation in polyploid<br>oilseed rape ( <scp><i>Brassica napus</i></scp> L.). Plant, Cell and Environment, 2020, 43, 675-691.                                                      | 5.7  | 28        |
| 11 | Genome-wide identification, phylogenetic and expression pattern analysis of GATA family genes in<br>Brassica napus. BMC Plant Biology, 2020, 20, 543.                                                                                                          | 3.6  | 32        |
| 12 | BnaSNPDB: An interactive web portal for the efficient retrieval and analysis of SNPs among 1,007 rapeseed accessions. Computational and Structural Biotechnology Journal, 2020, 18, 2766-2773.                                                                 | 4.1  | 10        |
| 13 | Effects of waterlogging stress on early seedling development and transcriptomic responses in<br>Brassica napus. Molecular Breeding, 2020, 40, 1.                                                                                                               | 2.1  | 16        |
| 14 | Melatonin Represses Oil and Anthocyanin Accumulation in Seeds. Plant Physiology, 2020, 183, 898-914.                                                                                                                                                           | 4.8  | 25        |
| 15 | SHAGGY-like kinase 12 regulates flowering through mediating CONSTANS stability in <i>Arabidopsis</i> . Science Advances, 2020, 6, eaaw0413.                                                                                                                    | 10.3 | 34        |
| 16 | Elevating seed oil content in a polyploid crop by induced mutations in <i>SEED FATTY ACID REDUCER</i> genes. Plant Biotechnology Journal, 2020, 18, 2251-2266.                                                                                                 | 8.3  | 77        |
| 17 | Effect of germination potential on storage lipids and transcriptome changes in premature developing seeds of oilseed rape (Brassica napus L.). Theoretical and Applied Genetics, 2020, 133, 2839-2852.                                                         | 3.6  | 5         |
| 18 | Genome-wide identification and characterization of SnRK family genes in Brassica napus. BMC Plant<br>Biology, 2020, 20, 287.                                                                                                                                   | 3.6  | 14        |

Li-xi Jiang

| #  | Article                                                                                                                                                                                                                             | IF         | CITATIONS      |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|
| 19 | Effects of 5-aminolevulinic Acid on the Bioactive Compounds and Seedling Growth of Oilseed Rape<br>(Brassica napus L.). Journal of Plant Biology, 2019, 62, 181-194.                                                                | 2.1        | 7              |
| 20 | Whole-Genome Resequencing of a Worldwide Collection of Rapeseed Accessions Reveals the Genetic Basis of Ecotype Divergence. Molecular Plant, 2019, 12, 30-43.                                                                       | 8.3        | 175            |
| 21 | <i>Arabidopsis thaliana NOP10</i> is required for gametophyte formation. Journal of Integrative Plant<br>Biology, 2018, 60, 723-736.                                                                                                | 8.5        | 9              |
| 22 | Role of jasmonic acid in improving tolerance of rapeseed (Brassica napus L.) to Cd toxicity. Journal of<br>Zhejiang University: Science B, 2018, 19, 130-146.                                                                       | 2.8        | 71             |
| 23 | Effect of high night temperature on storage lipids and transcriptome changes in developing seeds of oilseed rape. Journal of Experimental Botany, 2018, 69, 1721-1733.                                                              | 4.8        | 30             |
| 24 | lonomic, metabolomic and proteomic analyses reveal molecular mechanisms of root adaption to salt<br>stress in Tibetan wild barley. Plant Physiology and Biochemistry, 2018, 123, 319-330.                                           | 5.8        | 55             |
| 25 | Overexpression of the Tibetan Plateau annual wild barley (Hordeum spontaneum) HsCIPKs enhances rice to lerance to heavy metal toxicities and other abiotic stresses. Rice, 2018, 11, 51.                                            | 4.0        | 37             |
| 26 | <i>TRANSPARENT TESTA 4</i> â€mediated flavonoids negatively affect embryonic fatty acid biosynthesis in<br><i>Arabidopsis</i> . Plant, Cell and Environment, 2018, 41, 2773-2790.                                                   | 5.7        | 26             |
| 27 | Elucidating the physiological and biochemical responses of different tobacco ( <i>Nicotiana) Tj ETQq1 1 0.7843</i>                                                                                                                  | 14 rgBT /C | overlock 10 Tf |
| 28 | cDNA-Amplified fragment length polymorphism analysis reveals differential gene expression induced<br>by exogenous MeJA and GA3 in oilseed rape (Brassica napus L.) flowers. Journal of Integrative<br>Agriculture, 2017, 16, 47-56. | 3.5        | 2              |
| 29 | Identification of candidate genes involved in fatty acids degradation at the late maturity stage in<br>Brassica napus based on transcriptomic analysis. Plant Growth Regulation, 2017, 83, 385-396.                                 | 3.4        | 8              |
| 30 | Allelic Variation of BnaC.TT2.a and Its Association with Seed Coat Color and Fatty Acids in Rapeseed (Brassica napus L.). PLoS ONE, 2016, 11, e0146661.                                                                             | 2.5        | 20             |
| 31 | Characterization of Salinity Tolerance of Transgenic Rice Lines Harboring HsCBL8 of Wild Barley<br>(Hordeum spontanum) Line from Qinghai-Tibet Plateau. Frontiers in Plant Science, 2016, 7, 1678.                                  | 3.6        | 25             |
| 32 | Multi-omics analysis reveals molecular mechanisms of shoot adaption to salt stress in Tibetan wild barley. BMC Genomics, 2016, 17, 889.                                                                                             | 2.8        | 68             |
| 33 | Comparison on the carbohydrate metabolic enzyme activities and their gene expression patterns in canola differing seed oil content. Plant Growth Regulation, 2016, 78, 357-369.                                                     | 3.4        | 8              |
| 34 | The alleviation of cadmium toxicity in oilseed rape (Brassica napus) by the application of salicylic acid.<br>Plant Growth Regulation, 2015, 75, 641-655.                                                                           | 3.4        | 69             |
| 35 | Comparison of vitality between seedlings germinated from black-coated and yellow-coated seeds of a<br>turnip rape (Brassica rapa L.) subjected to NaCl and CdCl2 stresses. Plant Growth Regulation, 2015, 76,<br>61-70.             | 3.4        | 11             |
| 36 | The Remodeling of Seedling Development in Response to Long-Term Magnesium Toxicity and Regulation<br>by ABA–DELLA Signaling in Arabidopsis. Plant and Cell Physiology, 2014, 55, 1713-1726.                                         | 3.1        | 43             |

Li-xi Jiang

| #  | Article                                                                                                                                                                                                                                                | IF         | CITATIONS    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|
| 37 | Response of seed tocopherols in oilseed rape to nitrogen fertilizer sources and application rates.<br>Journal of Zhejiang University: Science B, 2014, 15, 181-193.                                                                                    | 2.8        | 13           |
| 38 | <i><scp>TRANSPARENT TESTA</scp>2</i> regulates embryonic fatty acid biosynthesis by targeting<br><i><scp>FUSCA</scp>3</i> during the early developmental stage of <scp>A</scp> rabidopsis seeds.<br>Plant Journal, 2014, 77, 757-769.                  | 5.7        | 63           |
| 39 | TRANSPARENT TESTA8 Inhibits Seed Fatty Acid Accumulation by Targeting Several Seed Development<br>Regulators in Arabidopsis. Plant Physiology, 2014, 165, 905-916.                                                                                     | 4.8        | 78           |
| 40 | Removal of DELLA repression promotes leaf senescence in Arabidopsis. Plant Science, 2014, 219-220, 26-34.                                                                                                                                              | 3.6        | 63           |
| 41 | Characterization of seed fatty acid accumulation in DELLA mutant lines of Arabidopsis. Plant Growth Regulation, 2013, 70, 27-37.                                                                                                                       | 3.4        | 4            |
| 42 | Detection of Tocopherol in Oilseed Rape (Brassica napus L.) Using Gas Chromatography with Flame<br>Ionization Detector. Journal of Integrative Agriculture, 2013, 12, 803-814.                                                                         | 3.5        | 24           |
| 43 | The Effect of <i>TRANSPARENT TESTA2</i> on Seed Fatty Acid Biosynthesis and Tolerance to<br>Environmental Stresses during Young Seedling Establishment in Arabidopsis  Â. Plant Physiology, 2012,<br>160, 1023-1036.                                   | 4.8        | 79           |
| 44 | <i>Seed Fatty Acid Reducer</i> acts downstream of gibberellin signalling pathway to lower seed fatty acid storage in <i>Arabidopsis</i> . Plant, Cell and Environment, 2012, 35, 2155-2169.                                                            | 5.7        | 93           |
| 45 | Analysis of gene expression profiles of two near-isogenic lines differing at a QTL region affecting oil content at high temperatures during seed maturation in oilseed rape (Brassica napus L.). Theoretical and Applied Genetics, 2012, 124, 515-531. | 3.6        | 41           |
| 46 | ALLEVIATION OF CADMIUM TOXICITY IN SOYBEAN BY POTASSIUM SUPPLEMENTATION. Journal of Plant Nutrition, 2010, 33, 1926-1938.                                                                                                                              | 1.9        | 32           |
| 47 | The effect of exogenous methyl jasmonate on the flowering time, floral organ morphology, and transcript levels of a group of genes implicated in the development of oilseed rape flowers (Brassica) Tj ETQq1 1 (                                       | 0.78824314 | rg&T /Overlo |
| 48 | Cadmium-induced stress on the seed germination and seedling growth of Brassica napus L., and its alleviation through exogenous plant growth regulators. Plant Growth Regulation, 2009, 58, 47-59.                                                      | 3.4        | 172          |
| 49 | Characterization of Pigmentation and Cellulose Synthesis in Colored Cotton Fibers. Crop Science, 2007, 47, 1540-1546.                                                                                                                                  | 1.8        | 57           |