Tomohiro Imura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/650066/publications.pdf Version: 2024-02-01

		71004	116156
123	5,044	43	66
papers	citations	h-index	g-index
125	125	125	3359
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Enrichment and Isolation of Surfactin-degrading Bacteria. Journal of Oleo Science, 2021, 70, 581-587.	0.6	4
2	Au(<scp>i</scp>)-, Ag(<scp>i</scp>)-, and Pd(<scp>ii</scp>)-coordination-driven diverse self-assembly of an N-heterocyclic carbene-based amphiphile. RSC Advances, 2021, 11, 17865-17870.	1.7	4
3	Influence of inorganic and organic counter-cations on the surface properties and self-assembly of cyclic lipopeptide surfactin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 126973.	2.3	4
4	Synthesis of an <i>N</i> -Heterocyclic Carbene-based Au(I) Coordinate Surfactant: Application for Alkyne Hydration Based on Au Nanoparticle Formation. Journal of Oleo Science, 2020, 69, 871-882.	0.6	8
5	Spontaneous Vesicle Formation of Monododecenyl Phosphonic Acid in Water. Journal of Oleo Science, 2019, 68, 1223-1230.	0.6	1
6	Fluorinated polymer surfactants bearing an alternating peptide skeleton prepared by three-component polycondensation. RSC Advances, 2018, 8, 7509-7513.	1.7	13
7	High Internal Phase Emulsion Gels Stabilized by Natural Casein peptides. Journal of Oleo Science, 2018, 67, 1579-1584.	0.6	4
8	Self-assembling Properties of an <i>N</i> -Heterocyclic Carbene-based Metallosurfactant: Pd-Coordination Induced Formation of Reactive Interfaces in Water. Journal of Oleo Science, 2018, 67, 1107-1115.	0.6	10
9	Efficient Production of Acid-Form Sophorolipids from Waste Glycerol and Fatty Acid Methyl Esters by <i>Candida floricola</i> . Journal of Oleo Science, 2018, 67, 489-496.	0.6	42
10	Lipid Nanodisc Formation using Pxt-5 Peptide Isolated from Amphibian (<i>Xenopus) Tj ETQq0 0 0 rgBT /Ov</i>	erlock 10 ⁻ 0.6	Tf 50 382 To
11	pH-induced conformational change of natural cyclic lipopeptide surfactin and the effect on protease activity. Colloids and Surfaces B: Biointerfaces, 2017, 156, 382-387.	2.5	14
12	Isolation of biologically active peptides from the venom of Japanese carpenter bee, Xylocopa appendiculata. Journal of Venomous Animals and Toxins Including Tropical Diseases, 2017, 23, 29.	0.8	9

13	Screening of a <i>Bacillus subtilis</i> Strain Producing Multiple Types of Cyclic Lipopeptides and Evaluation of Their Surface-tension-lowering Activities. Journal of Oleo Science, 2017, 66, 785-790.	0.6	5
14	Selective Production of Acid-form Sophorolipids from Glycerol by <i>Candida floricola</i> . Journal of Oleo Science, 2017, 66, 1365-1373.	0.6	22
15	Synthesis and Characterization of Dioctanoyl Glycerate as Water-soluble Trypsin Inhibitor. Journal of Oleo Science, 2016, 65, 251-256.	0.6	2
16	Synthesis of surface-active N-heterocyclic carbene ligand and its Pd-catalyzed aqueous Mizoroki–Heck reaction. Tetrahedron, 2016, 72, 4117-4122.	1.0	23
17	Structures and Surface Properties of "Cyclic―Polyoxyethylene Alkyl Ethers: Unusual Behavior of Cyclic Surfactants in Water. Langmuir, 2016, 32, 8374-8382.	1.6	4
18	Physicochemical and biological characterizations of Pxt peptides from amphibian (Xenopus tropicalis) skin. Journal of Biochemistry, 2016, 159, 619-629.	0.9	4

#	Article	IF	CITATIONS
19	Mannosylerythritol Lipids: Production and Applications. Journal of Oleo Science, 2015, 64, 133-141.	0.6	81
20	Interfacial and Emulsifying Properties of Soybean Peptides with Different Degrees of Hydrolysis. Journal of Oleo Science, 2015, 64, 183-189.	0.6	15
21	Selective encapsulation of cesium ions using the cyclic peptide moiety of surfactin: Highly efficient removal based on an aqueous giant micellar system. Colloids and Surfaces B: Biointerfaces, 2015, 134, 59-64.	2.5	17
22	Selective formation of mannosyl-l-arabitol lipid by Pseudozyma tsukubaensis JCM16987. Applied Microbiology and Biotechnology, 2015, 99, 5833-5841.	1.7	12
23	Identification of novel peptides from amphibian (<i>XenopusÂtropicalis</i>) skin by direct tissue <scp>MALDI</scp> â€ <scp>MS</scp> analysis. FEBS Journal, 2015, 282, 102-113.	2.2	8
24	Spontaneous Vesicle Formation from Sodium Salt of Acidic Sophorolipid and Its Application as a Skin Penetration Enhancer. Journal of Oleo Science, 2014, 63, 141-147.	0.6	17
25	Monolayer Behavior of Binary Systems of Lactonic and Acidic Forms of Sophorolipids: Thermodynamic Analyses of Langmuir Monolayers and AFM Study of Langmuir^ ^ndash;Blodgett Monolayers. Journal of Oleo Science, 2014, 63, 67-73.	0.6	7
26	Minimum Amino Acid Residues of an α-Helical Peptide Leading to Lipid Nanodisc Formation. Journal of Oleo Science, 2014, 63, 1203-1208.	0.6	11
27	Monolayer Behavior of Cyclic and Linear Forms of Surfactins: Thermodynamic Analysis of Langmuir Monolayers and AFM Study of Langmuir-Blodgett Monolayers. Journal of Oleo Science, 2014, 63, 407-412.	0.6	10
28	Production of Glycolipid Biosurfactants and Their Potential Applications. Oleoscience, 2014, 14, 465-472.	0.0	0
29	Selective production of two diastereomers of disaccharide sugar alcohol, mannosylerythritol by Pseudozyma yeasts. Applied Microbiology and Biotechnology, 2014, 98, 823-830.	1.7	9
30	Production of d-arabitol from raw glycerol by Candida quercitrusa. Applied Microbiology and Biotechnology, 2014, 98, 2947-2953.	1.7	26
31	Production of mannitol from raw glycerol by Candida azyma. Journal of Bioscience and Bioengineering, 2014, 117, 725-729.	1.1	22
32	Biosurfactant-producing yeasts widely inhabit various vegetables and fruits. Bioscience, Biotechnology and Biochemistry, 2014, 78, 516-523.	0.6	16
33	Surfactant-like Properties of an Amphiphilic α-Helical Peptide Leading to Lipid Nanodisc Formation. Langmuir, 2014, 30, 4752-4759.	1.6	24
34	Aqueous Gel Formation from Sodium Salts of Cellobiose Lipids. Journal of Oleo Science, 2014, 63, 1005-1010.	0.6	16
35	Mimicry of High-Density Lipoprotein: Functional Peptide–Lipid Nanoparticles Based on Multivalent Peptide Constructs. Journal of the American Chemical Society, 2013, 135, 13414-13424.	6.6	68
36	Accumulation of cellobiose lipids under nitrogen-limiting conditions by two ustilaginomycetous yeasts, <i>Pseudozyma aphidis</i> and <i>Pseudozyma hubeiensis</i> . FEMS Yeast Research, 2013, 13, 44-49.	1.1	38

#	Article	IF	CITATIONS
37	Production of mannosylerythritol lipids and their application in cosmetics. Applied Microbiology and Biotechnology, 2013, 97, 4691-4700.	1.7	99
38	Genome Sequence of the Basidiomycetous Yeast <i>Pseudozyma antarctica</i> T-34, a Producer of the Glycolipid Biosurfactants Mannosylerythritol Lipids. Genome Announcements, 2013, 1, e0006413.	0.8	65
39	Interdigitated Lamella and Bicontinuous Cubic Phases Formation from Natural Cyclic Surfactin and Its Linear Derivative. Journal of Oleo Science, 2013, 62, 499-503.	0.6	12
40	Production of Sophorolipids from Non-edible Jatropha Oil by Stamerella bombicola NBRC 10243 and Evaluation of their Interfacial Properties. Journal of Oleo Science, 2013, 62, 857-864.	0.6	26
41	Production of a Novel Mannosylerythritol Lipid Containing a Hydroxy Fatty Acid from Castor Oil by Pseudozyma tsukubaensis. Journal of Oleo Science, 2013, 62, 381-389.	0.6	28
42	Characterization of Mannosylerythritol Lipids Containing Hexadecatetraenoic Acid Produced from Cuttlefish Oil by Pseudozyma churashimaensis OK96. Journal of Oleo Science, 2013, 62, 319-327.	0.6	12
43	Isolation and Screening of Glycolipid Biosurfactant Producers from Sugarcane. Bioscience, Biotechnology and Biochemistry, 2012, 76, 1788-1791.	0.6	15
44	Formation of the two novel glycolipid biosurfactants, mannosylribitol lipid and mannosylarabitol lipid, by Pseudozyma parantarctica JCM 11752T. Applied Microbiology and Biotechnology, 2012, 96, 931-938.	1.7	42
45	Reverse vesicle formation from the yeast glycolipid biosurfactant mannosylerythritol lipid-D. Journal of Oleo Science, 2012, 61, 285-289.	0.6	9
46	Low Molecular Weight Gelators Based on Biosurfactants, Cellobiose Lipids by Cryptococcus humicola. Journal of Oleo Science, 2012, 61, 659-664.	0.6	16
47	Glycolipid Biosurfactants, Mannosylerythritol Lipids, Show Antioxidant and Protective Effects against H2O2-Induced Oxidative Stress in Cultured Human Skin Fibroblasts. Journal of Oleo Science, 2012, 61, 457-464.	0.6	102
48	The Moisturizing Effects of Glycolipid Biosurfactants, Mannosylerythritol Lipids, on Human Skin. Journal of Oleo Science, 2012, 61, 407-412.	0.6	65
49	The diastereomers of mannosylerythritol lipids have different interfacial properties and aqueous phase behavior, reflecting the erythritol configuration. Carbohydrate Research, 2012, 351, 81-86.	1.1	32
50	Production of Glycolipid Biosurfactants, Cellobiose Lipids, by <i>Cryptococcus humicola</i> JCM 1461 and Their Interfacial Properties. Bioscience, Biotechnology and Biochemistry, 2011, 75, 1597-1599.	0.6	44
51	Production and Characterization of a Glycolipid Biosurfactant, Mannosylerythritol Lipid B, from Sugarcane Juice by <i>Ustilago scitaminea</i> NBRC 32730. Bioscience, Biotechnology and Biochemistry, 2011, 75, 1371-1376.	0.6	42
52	Production of Sophorolipid Glycolipid Biosurfactants from Sugarcane Molasses Using <i>Starmerella bombicola</i> NBRC 10243. Journal of Oleo Science, 2011, 60, 267-273.	0.6	59
53	Yeast extract stimulates production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma hubeiensis SY62. Journal of Bioscience and Bioengineering, 2011, 111, 702-705.	1.1	49
54	Isolation of Pseudozyma churashimaensis sp. nov., a novel ustilaginomycetous yeast species as a producer of glycolipid biosurfactants, mannosylerythritol lipids. Journal of Bioscience and Bioengineering, 2011, 112, 137-144.	1.1	51

#	Article	IF	CITATIONS
55	Enzymatic synthesis of a novel glycolipid biosurfactant, mannosylerythritol lipid-D and its aqueous phase behavior. Carbohydrate Research, 2011, 346, 266-271.	1.1	42
56	Enzymatic Conversion of Diacetylated Sophoroselipid into Acetylated Glucoselipid: Surface-Active Properties of Novel Bolaform Biosurfactants. Journal of Oleo Science, 2010, 59, 495-501.	0.6	33
57	Glycolipid Biosurfactants, Mannosylerythritol Lipids, Repair the Damaged Hair. Journal of Oleo Science, 2010, 59, 267-272.	0.6	73
58	Isolation of basidiomycetous yeast Pseudozyma tsukubaensis and production of glycolipid biosurfactant, a diastereomer type of mannosylerythritol lipid-B. Applied Microbiology and Biotechnology, 2010, 88, 679-688.	1.7	49
59	Biosurfactant-producing yeast isolated from Calyptogena soyoae (deep-sea cold-seep clam) in the deep sea. Journal of Bioscience and Bioengineering, 2010, 110, 169-175.	1.1	28
60	Photooxidative mineralization of microorganisms-produced glycolipid biosurfactants by a titania-mediated advanced oxidation process. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 209, 147-152.	2.0	3
61	The role of <i>PaAAC1</i> encoding a mitochondrial ADP/ATP carrier in the biosynthesis of extracellular glycolipids, mannosylerythritol lipids, in the basidiomycetous yeast <i>Pseudozyma antarctica</i> . Yeast, 2010, 27, 379-388.	0.8	6
62	Identification of the gene <i>PaEMT1</i> for biosynthesis of mannosylerythritol lipids in the basidiomycetous yeast <i>Pseudozyma antarctica</i> . Yeast, 2010, 27, 905-917.	0.8	27
63	Activation of Fibroblast and Papilla Cells by Glycolipid Biosurfactants, Mannosylerythritol Lipids Journal of Oleo Science, 2010, 59, 451-455.	0.6	29
64	Preparation of Molecular Assemblies Composed of Natural Amphiphiles and Their Applications. Oleoscience, 2010, 10, 461-470.	0.0	0
65	Development of Microbial Biosurfactants Contributing to Low-Carbon Society. Journal of the Japan Society of Colour Material, 2010, 83, 76-81.	0.0	Ο
66	Detection of Acetyl Monoglyceride as a Metabolite of Newly Isolated Glycerol-assimilating Bacteria. Journal of Oleo Science, 2009, 58, 147-154.	0.6	5
67	Production of a novel glycolipid biosurfactant, mannosylmannitol lipid, by Pseudozyma parantarctica and its interfacial properties. Applied Microbiology and Biotechnology, 2009, 83, 1017-1025.	1.7	62
68	Self-assembling properties of glycolipid biosurfactants and their potential applications. Current Opinion in Colloid and Interface Science, 2009, 14, 315-328.	3.4	246
69	Phase behavior of ternary mannosylerythritol lipid/water/oil systems. Colloids and Surfaces B: Biointerfaces, 2009, 68, 207-212.	2.5	37
70	Production of glycolipid biosurfactants by basidiomycetous yeasts. Biotechnology and Applied Biochemistry, 2009, 53, 39.	1.4	65
71	Production of Glycolipid Biosurfactants, Mannosylerythritol Lipids, by a Smut Fungus, <i>Ustilago scitaminea</i> NBRC 32730. Bioscience, Biotechnology and Biochemistry, 2009, 73, 788-792.	0.6	37
72	Production of Glycolipid Biosurfactants, Mannosylerythritol Lipids, Using Sucrose by Fungal and Yeast Strains, and Their Interfacial Properties. Bioscience, Biotechnology and Biochemistry, 2009, 73, 2352-2355.	0.6	25

#	Article	IF	CITATIONS
73	A Yeast Glycolipid Biosurfactant, Mannosylerythritol Lipid, Shows Potential Moisturizing Activity toward Cultured Human Skin Cells: The Recovery Effect of MEL-A on the SDS-damaged Human Skin Cells. Journal of Oleo Science, 2009, 58, 639-642.	0.6	63
74	Structural Characterization and Surface-Active Properties of a Succinoyl Trehalose Lipid Produced by Rhodococcus sp. SD-74. Journal of Oleo Science, 2009, 58, 97-102.	0.6	64
75	Efficient production of mannosylerythritol lipids with high hydrophilicity by Pseudozyma hubeiensis KM-59. Applied Microbiology and Biotechnology, 2008, 78, 37-46.	1.7	65
76	Aqueous-phase behavior and vesicle formation of natural glycolipid biosurfactant, mannosylerythritol lipid-B. Colloids and Surfaces B: Biointerfaces, 2008, 65, 106-112.	2.5	60
77	A basidiomycetous yeast, Pseudozyma tsukubaensis, efficiently produces a novel glycolipid biosurfactant. The identification of a new diastereomer of mannosylerythritol lipid-B. Carbohydrate Research, 2008, 343, 555-560.	1.1	86
78	A basidiomycetous yeast, Pseudozyma crassa, produces novel diastereomers of conventional mannosylerythritol lipids as glycolipid biosurfactants. Carbohydrate Research, 2008, 343, 2947-2955.	1.1	34
79	Production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma siamensis CBS 9960 and their interfacial properties. Journal of Bioscience and Bioengineering, 2008, 105, 493-502.	1.1	70
80	Characterization and Bioavailability of Liposomes Containing a Ukon Extract. Bioscience, Biotechnology and Biochemistry, 2008, 72, 1199-1205.	0.6	29
81	Preparation and Properties of Liposomes Composed of Various Phospholipids with Different Hydrophobic Chains Using a Supercritical Reverse Phase Evaporation Method. Journal of Oleo Science, 2008, 57, 613-621.	0.6	20
82	Formation of W/O Microemulsion Based on Natural Glycolipid Biosurfactant, Mannosylerythritol Lipid-A. Journal of Oleo Science, 2008, 57, 55-59.	0.6	24
83	Identification of Pseudozyma graminicola CBS 10092 as a Producer of Glycolipid Biosurfactants, Mannosylerythritol Lipids. Journal of Oleo Science, 2008, 57, 123-131.	0.6	49
84	Efficient Production of Di- and Tri-acylated Mannosylerythritol Lipids as Glycolipid Biosurfactants by Pseudozyma parantarctica JCM 11752T. Journal of Oleo Science, 2008, 57, 557-565.	0.6	40
85	Packing Density of Glycolipid Biosurfactant Monolayers Give a Significant Effect on Their Binding Affinity Toward Immunoglobulin G. Journal of Oleo Science, 2008, 57, 415-422.	0.6	17
86	Identification of Ustilago cynodontis as a New Producer of Glycolipid Biosurfactants, Mannosylerythritol Lipids, Based on Ribosomal DNA Sequences. Journal of Oleo Science, 2008, 57, 549-556.	0.6	25
87	Production of New Types of Sophorolipids by <i>Candida batistae</i> . Journal of Oleo Science, 2008, 57, 359-369.	0.6	134
88	Efficient Preparation of Liposomes Encapsulating Food Materials Using Lecithins by a Mechanochemical Method. Journal of Oleo Science, 2007, 56, 35-42.	0.6	83
89	Characterization of New Types of Mannosylerythritol Lipids as Biosurfactants Produced from Soybean Oil by a Basidiomycetous Yeast, Pseudozyma shanxiensis. Journal of Oleo Science, 2007, 56, 435-442.	0.6	62
90	Convenient Transformation of Anamorphic Basidiomycetous Yeasts Belonging to Genus Pseudozyma Induced by Electroporation. Journal of Bioscience and Bioengineering, 2007, 104, 517-520.	1.1	20

Tomohiro Imura

#	Article	IF	CITATIONS
91	Microbial conversion of glycerol into glycolipid biosurfactants, mannosylerythritol lipids, by a basidiomycete yeast, Pseudozyma antarctica JCM 10317T. Journal of Bioscience and Bioengineering, 2007, 104, 78-81.	1.1	93
92	Aqueous-Phase Behavior of Natural Glycolipid Biosurfactant Mannosylerythritol Lipid A:Â Sponge, Cubic, and Lamellar Phases. Langmuir, 2007, 23, 1659-1663.	1.6	108
93	Kinetic studies on the interactions between glycolipid biosurfactant assembled monolayers and various classes of immunoglobulins using surface plasmon resonance. Colloids and Surfaces B: Biointerfaces, 2007, 58, 165-171.	2.5	54
94	Characterization of the genusPseudozymaby the formation of glycolipid biosurfactants, mannosylerythritol lipids. FEMS Yeast Research, 2007, 7, 286-292.	1.1	115
95	Physiological differences in the formation of the glycolipid biosurfactants, mannosylerythritol lipids, between Pseudozyma antarctica and Pseudozyma aphidis. Applied Microbiology and Biotechnology, 2007, 74, 307-315.	1.7	71
96	Production of different types of mannosylerythritol lipids as biosurfactants by the newly isolated yeast strains belonging to the genus Pseudozyma. Applied Microbiology and Biotechnology, 2007, 75, 521-531.	1.7	97
97	Structural characterization and surface-active properties of a new glycolipid biosurfactant, mono-acylated mannosylerythritol lipid, produced from glucose by Pseudozyma antarctica. Applied Microbiology and Biotechnology, 2007, 76, 801-810.	1.7	88
98	A yeast glycolipid biosurfactant, mannosylerythritol lipid, shows high binding affinity towards lectins on a self-assembled monolayer system. Biotechnology Letters, 2007, 29, 473-480.	1.1	60
99	Monolayers assembled from a glycolipid biosurfactant from Pseudozyma (Candida) antarctica serve as a high-affinity ligand system for immunoglobulin G and M. Biotechnology Letters, 2007, 29, 865-870.	1.1	39
100	Characterization of new glycolipid biosurfactants, tri-acylated mannosylerythritol lipids, produced by Pseudozyma yeasts. Biotechnology Letters, 2007, 29, 1111-1118.	1.1	62
101	One-Step Preparation of Chitosan-Coated Cationic Liposomes by an Improved Supercritical Reverse-Phase Evaporation Method. Langmuir, 2006, 22, 4054-4059.	1.6	60
102	Preparation of Liposomes Using an Improved Supercritical Reverse Phase Evaporation Method. Langmuir, 2006, 22, 2543-2550.	1.6	134
103	Analysis of expressed sequence tags from the anamorphic basidiomycetous yeast,Pseudozyma antarctica, which produces glycolipid biosurfactants, mannosylerythritol lipids. Yeast, 2006, 23, 661-671.	0.8	24
104	Preparation of Tubular Silicalite Membranes by Hydrothermal Synthesis with Electrophoretic Deposition as a Seeding Technique. Journal of the American Ceramic Society, 2006, 89, 124-130.	1.9	34
105	Discovery of Pseudozyma rugulosa NBRC 10877 as a novel producer of the glycolipid biosurfactants, mannosylerythritol lipids, based on rDNA sequence. Applied Microbiology and Biotechnology, 2006, 73, 305-313.	1.7	115
106	Naturally Engineered Glycolipid Biosurfactants Leading to Distinctive Self-Assembled Structures. Chemistry - A European Journal, 2006, 12, 2434-2440.	1.7	110
107	Chapter 6: Molecular Interactions between Lipid and Its Related Substances in Bilayer Membranes. Behavior Research Methods, 2006, 4, 191-227.	2.3	1
108	Stearylamine Changes the Liposomal Shape from MLVs to LUVs. Journal of Oleo Science, 2005, 54, 251-254.	0.6	12

#	Article	IF	CITATIONS
109	Membrane properties of cationic liposomes composed of dipalmitoylphosphatidylcholine and dipalmityldimethylammonium bromide. Colloids and Surfaces B: Biointerfaces, 2005, 44, 204-210.	2.5	10
110	Thermodynamically stable vesicle formation from glycolipid biosurfactant sponge phase. Colloids and Surfaces B: Biointerfaces, 2005, 43, 115-121.	2.5	49
111	Stabilization of bioethanol recovery with silicone rubber-coated ethanol-permselective silicalite membranes by controlling the pH of acidic feed solution. Journal of Chemical Technology and Biotechnology, 2005, 80, 381-387.	1.6	20
112	Reliable production of highly concentrated bioethanol by a conjunction of pervaporation using a silicone rubber sheet-covered silicalite membrane with adsorption process. Journal of Chemical Technology and Biotechnology, 2004, 79, 896-901.	1.6	19
113	Coacervate Formation from Natural Glycolipid:Â One Acetyl Group on the Headgroup Triggers Coacervate-to-Vesicle Transition. Journal of the American Chemical Society, 2004, 126, 10804-10805.	6.6	115
114	Preparation and physicochemical properties of various soybean lecithin liposomes using supercritical reverse phase evaporation method. Colloids and Surfaces B: Biointerfaces, 2003, 27, 133-140.	2.5	69
115	Membrane properties of mixed dipalmitoylphosphatidylglycerol/ganglioside GM3 liposomes in the presence of bovine serum albumin. Colloids and Surfaces B: Biointerfaces, 2003, 27, 141-146.	2.5	9
116	Control of Physicochemical Properties of Liposomes Using a Supercritical Reverse Phase Evaporation Method. Langmuir, 2003, 19, 2021-2025.	1.6	58
117	Drastic Improvements in Trapping Efficiency and Dispersibility for Phosphatidylcholine Liposomes in the Presence of Divalent Metal Ions. Journal of Oleo Science, 2003, 52, 673-679.	0.6	7
118	Development of a New Preparation Method of Liposomes Using Supercritical Carbon Dioxide. Langmuir, 2001, 17, 3898-3901.	1.6	168
119	Preparation of liposomes containing Ceramide 3 and their membrane characteristics. Colloids and Surfaces B: Biointerfaces, 2001, 20, 1-8.	2.5	43
120	Effect of adsorption of bovine serum albumin on liposomal membrane characteristics. Colloids and Surfaces B: Biointerfaces, 2001, 20, 95-103.	2.5	73
121	Effects of lysozyme and bovine serum albumin on membrane characteristics of dipalmitoylphosphatidylglycerol liposomes. Colloids and Surfaces B: Biointerfaces, 2001, 20, 155-163.	2.5	43
122	Atomic force microscopic study on the surface properties of phospholipid monolayers containing Ceramide 3. Colloids and Surfaces B: Biointerfaces, 2000, 19, 81-87.	2.5	23
123	Domain Formation and Phase Separation in Mixed Phospatidylcholine/Ceramide 3 Monolayers and Bilayers, Journal of Japan Oil Chemists' Society, 2000, 49, 373-377,391.	0.3	5