
Maria Bondesson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/650052/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Use of Reporter Genes to Analyze Estrogen Response: The Transgenic Zebrafish Model. Methods in Molecular Biology, 2022, 2418, 173-185.	0.9	3
2	Folic acid supplementation rescues valproic acidâ€induced developmental neurotoxicity and behavioral alterations in zebrafish embryos. Epilepsia, 2021, 62, 1689-1700.	5.1	15
3	Reproducibility of adipogenic responses to metabolism disrupting chemicals in the 3T3-L1 pre-adipocyte model system: An interlaboratory study. Toxicology, 2021, 461, 152900.	4.2	14
4	Arsenic exposure induces a bimodal toxicity response in zebrafish. Environmental Pollution, 2021, 287, 117637.	7.5	16
5	E-cigarette vaping liquids and the flavoring chemical cinnamaldehyde perturb bone, cartilage and vascular development in zebrafish embryos. Aquatic Toxicology, 2021, 240, 105995.	4.0	10
6	Nuclear receptors: from molecular mechanisms to therapeutics. Essays in Biochemistry, 2021, 65, 847-856.	4.7	43
7	Rapid Microfluidic Formation of Uniform Patient-Derived Breast Tumor Spheroids. ACS Applied Bio Materials, 2020, 3, 6273-6283.	4.6	27
8	A Layered Mounting Method for Extended Time-Lapse Confocal Microscopy of Whole Zebrafish Embryos. Journal of Visualized Experiments, 2020, , .	0.3	2
9	Differential activity of BPA, BPAF and BPC on zebrafish estrogen receptors in vitro and in vivo. Toxicology and Applied Pharmacology, 2019, 380, 114709.	2.8	37
10	Epigallocatechin-3-gallate suppresses neutrophil migration speed in a transgenic zebrafish model accompanied by reduced inflammatory mediators. Journal of Inflammation Research, 2019, Volume 12, 231-239.	3.5	8
11	A Digital Acoustofluidic Pump Powered by Localized Fluid-Substrate Interactions. Analytical Chemistry, 2019, 91, 7097-7103.	6.5	32
12	MicroRNA-509-3p inhibits cellular migration, invasion, and proliferation, and sensitizes osteosarcoma to cisplatin. Scientific Reports, 2019, 9, 19089.	3.3	26
13	Acoustic assembly of cell spheroids in disposable capillaries. Nanotechnology, 2018, 29, 504006.	2.6	44
14	Combining mouse embryonic stem cells and zebrafish embryos to evaluate developmental toxicity of chemical exposure. Reproductive Toxicology, 2018, 81, 220-228.	2.9	5
15	Screening for angiogenic inhibitors in zebrafish to evaluate a predictive model for developmental vascular toxicity. Reproductive Toxicology, 2017, 70, 70-81.	2.9	36
16	Identification of vascular disruptor compounds by analysis in zebrafish embryos and mouse embryonic endothelial cells. Reproductive Toxicology, 2017, 70, 60-69.	2.9	17
17	Advancing toxicology research using in vivo high throughput toxicology with small fish models. ALTEX: Alternatives To Animal Experimentation, 2016, 33, 435-452.	1.5	48
18	Lxr regulates lipid metabolic and visual perception pathways during zebrafish development. Molecular and Cellular Endocrinology, 2016, 419, 29-43.	3.2	30

MARIA BONDESSON

#	Article	IF	CITATIONS
19	Use of Reporter Genes to Analyze Estrogen Response: The Transgenic Zebrafish Model. Methods in Molecular Biology, 2016, 1366, 315-325.	0.9	7
20	Identification of environmental chemicals that induce yolk malabsorption in zebrafish using automated image segmentation. Reproductive Toxicology, 2015, 55, 20-29.	2.9	16
21	Comparison of toxicity values across zebrafish early life stages and mammalian studies: Implications for chemical testing. Reproductive Toxicology, 2015, 55, 3-10.	2.9	94
22	Estrogen receptor signaling during vertebrate development. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 142-151.	1.9	146
23	Coexposure to Phytoestrogens and Bisphenol A Mimics Estrogenic Effects in an Additive Manner. Toxicological Sciences, 2014, 138, 21-35.	3.1	50
24	Gestational bisphenol A exposure and testis development. Endocrine Disruptors (Austin, Tex), 2014, 2, e29088.	1.1	24
25	A framework for building multi-tissue atlas of zebrafish embryo. , 2014, , .		0
26	Halogenated Bisphenol-A Analogs Act as Obesogens in Zebrafish Larvae (Danio rerio). Toxicological Sciences, 2014, 139, 48-58.	3.1	112
27	Embryonic exposure to sodium arsenite perturbs vascular development in zebrafish. Aquatic Toxicology, 2014, 152, 152-163.	4.0	29
28	Selectivity of natural, synthetic and environmental estrogens for zebrafish estrogen receptors. Toxicology and Applied Pharmacology, 2014, 280, 60-69.	2.8	38
29	Immediate and long-term consequences of vascular toxicity during zebrafish development. Reproductive Toxicology, 2014, 48, 51-61.	2.9	24
30	Meta-analysis of toxicity and teratogenicity of 133 chemicals from zebrafish developmental toxicity studies. Reproductive Toxicology, 2013, 41, 98-108.	2.9	45
31	3D quantitative analyses of angiogenic sprout growth dynamics. Developmental Dynamics, 2013, 242, 518-526.	1.8	8
32	Identification of Estrogen Target Genes during Zebrafish Embryonic Development through Transcriptomic Analysis. PLoS ONE, 2013, 8, e79020.	2.5	98
33	Segmentation of zebrafish embryonic images using a geometric atlas deformation. , 2012, 2012, 3998-4001.		1
34	ERβ1 represses basal-like breast cancer epithelial to mesenchymal transition by destabilizing EGFR. Breast Cancer Research, 2012, 14, R148.	5.0	73
35	Genome-Wide Search Reveals the Existence of a Limited Number of Thyroid Hormone Receptor Alpha Target Genes in Cerebellar Neurons. PLoS ONE, 2012, 7, e30703.	2.5	23
36	Developmental toxicity screening in zebrafish. Birth Defects Research Part C: Embryo Today Reviews, 2011, 93, 67-114.	3.6	122

Maria Bondesson

#	Article	IF	CITATIONS
37	3D imaging for quantitative assessment of toxicity on vascular development in zebrafish. , 2011, 2011, 5969-72.		1
38	Automatic segmentation of time-lapse microscopy images depicting a live Dharma embryo. , 2011, 2011, 8082-5.		0
39	Does consuming isoflavones reduce or increase breast cancer risk?. Genome Medicine, 2010, 2, 90.	8.2	7
40	A CASCADE of effects of bisphenol A. Reproductive Toxicology, 2009, 28, 563-567.	2.9	43
41	Overexpression of E2F1 in Clear Cell Renal Cell Carcinoma: A Potential Impact of Erroneous Regulation by Thyroid Hormone Nuclear Receptors. Thyroid, 2007, 17, 1039-1048.	4.5	11
42	Thyroid hormone-mediated negative transcriptional regulation of Necdin expression. Journal of Molecular Endocrinology, 2006, 36, 517-530.	2.5	17
43	Hypoxia Requires Notch Signaling to Maintain the Undifferentiated Cell State. Developmental Cell, 2005, 9, 617-628.	7.0	1,027
44	Hormone-Dependent Repression of the E2F-1 Gene by Thyroid Hormone Receptors. Molecular Endocrinology, 2003, 17, 79-92.	3.7	68
45	Activity of the Nurr1 Carboxyl-terminal Domain Depends on Cell Type and Integrity of the Activation Function 2. Journal of Biological Chemistry, 1999, 274, 37483-37490.	3.4	68
46	The Adenovirus E1A Protein Is a Potent Coactivator for Thyroid Hormone Receptors. Molecular Endocrinology, 1999, 13, 1119-1129.	3.7	13
47	An adenovirus E1A transcriptional repressor domain functions as an activator when tethered to a promoter. Nucleic Acids Research, 1994, 22, 3053-3060.	14.5	38
48	Independent transformation activity by adenovirus-5 E1A-Conserved regions 1 or 2 mutants. Virology, 1991, 182, 553-561.	2.4	29
49	Estrogen receptor beta reduces colon cancer metastasis through a novel miR-205 - PROX1 mechanism. Oncotarget, 0, 7, 42159-42171.	1.8	40