Qing Dai

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6500459/qing-dai-publications-by-year.pdf

Version: 2024-04-26

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

80	20,033	38	84
papers	citations	h-index	g-index
84 ext. papers	24,932 ext. citations	16.2 avg, IF	6.41 L-index

#	Paper	IF	Citations
80	The METTL5-TRMT112 N-methyladenosine methyltransferase complex regulates mRNA translation via 18S rRNA methylation <i>Journal of Biological Chemistry</i> , 2022 , 101590	5.4	2
79	mA RNA modifications are measured at single-base resolution across the mammalian transcriptome <i>Nature Biotechnology</i> , 2022 ,	44.5	9
78	A high-throughput screening method for evolving a demethylase enzyme with improved and new functionalities. <i>Nucleic Acids Research</i> , 2021 , 49, e30	20.1	6
77	ALKBH7-mediated demethylation regulates mitochondrial polycistronic RNA processing. <i>Nature Cell Biology</i> , 2021 , 23, 684-691	23.4	10
76	Decoding the epitranscriptional landscape from native RNA sequences. <i>Nucleic Acids Research</i> , 2021 , 49, e7	20.1	68
75	METTL3-dependent RNA mA dysregulation contributes to neurodegeneration in Alzheimer\$ disease through aberrant cell cycle events. <i>Molecular Neurodegeneration</i> , 2021 , 16, 70	19	15
74	Impact of DNA sequences on DNA SopeningSby the Rad4/XPC nucleotide excision repair complex. <i>DNA Repair</i> , 2021 , 107, 103194	4.3	2
73	N6-methyladenosine dynamics in neurodevelopment and aging, and its potential role in AlzheimerS disease. <i>Genome Biology</i> , 2021 , 22, 17	18.3	38
72	Interferon inducible pseudouridine modification in human mRNA by quantitative nanopore profiling. <i>Genome Biology</i> , 2021 , 22, 330	18.3	6
71	DNA 5-Methylcytosine-Specific Amplification and Sequencing. <i>Journal of the American Chemical Society</i> , 2020 , 142, 4539-4543	16.4	8
70	Oxidized Derivatives of 5-Methylcytosine Alter the Stability and Dehybridization Dynamics of Duplex DNA. <i>Journal of Physical Chemistry B</i> , 2020 , 124, 1160-1174	3.4	8
69	Deoxyribozyme-based method for absolute quantification of -methyladenosine fractions at specific sites of RNA. <i>Journal of Biological Chemistry</i> , 2020 , 295, 6992-7000	5.4	12
68	A metabolic labeling method detects mA transcriptome-wide at single base resolution. <i>Nature Chemical Biology</i> , 2020 , 16, 887-895	11.7	70
67	5-Carboxylcytosine and Cytosine Protonation Distinctly Alter the Stability and Dehybridization Dynamics of the DNA Duplex. <i>Journal of Physical Chemistry B</i> , 2020 , 124, 627-640	3.4	5
66	Tethering-facilitated DNA SopeningSand complementary roles of Ehairpin motifs in the Rad4/XPC DNA damage sensor protein. <i>Nucleic Acids Research</i> , 2020 , 48, 12348-12364	20.1	6
65	E6-Phosphogluconolactone, a Byproduct of the Oxidative Pentose Phosphate Pathway, Contributes to AMPK Activation through Inhibition of PP2A. <i>Molecular Cell</i> , 2019 , 76, 857-871.e9	17.6	15
64	Evolution of a reverse transcriptase to map N-methyladenosine in human messenger RNA. <i>Nature Methods</i> , 2019 , 16, 1281-1288	21.6	55

63	Thymine DNA glycosylase recognizes the geometry alteration of minor grooves induced by 5-formylcytosine and 5-carboxylcytosine. <i>Chemical Science</i> , 2019 , 10, 7407-7417	9.4	13
62	Jump-seq: Genome-Wide Capture and Amplification of 5-Hydroxymethylcytosine Sites. <i>Journal of the American Chemical Society</i> , 2019 , 141, 8694-8697	16.4	14
61	Comparison of the Structures and Mechanisms of the Pistol and Hammerhead Ribozymes. <i>Journal of the American Chemical Society</i> , 2019 , 141, 7865-7875	16.4	29
60	Transcriptome-wide Mapping of Internal N-Methylguanosine Methylome in Mammalian mRNA. <i>Molecular Cell</i> , 2019 , 74, 1304-1316.e8	17.6	133
59	A Novel Allosteric Inhibitor of Phosphoglycerate Mutase 1 Suppresses Growth and Metastasis of Non-Small-Cell Lung Cancer. <i>Cell Metabolism</i> , 2019 , 30, 1107-1119.e8	24.6	31
58	Excision of 5-Carboxylcytosine by Thymine DNA Glycosylase. <i>Journal of the American Chemical Society</i> , 2019 , 141, 18851-18861	16.4	12
57	Transfer RNA demethylase ALKBH3 promotes cancer progression via induction of tRNA-derived small RNAs. <i>Nucleic Acids Research</i> , 2019 , 47, 2533-2545	20.1	108
56	Single base resolution mapping of 2SO-methylation sites in human mRNA and in 3Sterminal ends of small RNAs. <i>Methods</i> , 2019 , 156, 85-90	4.6	10
55	NMethyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. <i>Nature Chemical Biology</i> , 2019 , 15, 88-94	11.7	149
54	Pseudouridines have context-dependent mutation and stop rates in high-throughput sequencing. <i>RNA Biology</i> , 2018 , 15, 892-900	4.8	18
53	Biogenesis of a 22-nt microRNA in Phaseoleae species by precursor-programmed uridylation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 8037-8042	11.5	27
52	R-2HG Exhibits Anti-tumor Activity by Targeting FTO/mA/MYC/CEBPA Signaling. <i>Cell</i> , 2018 , 172, 90-105	. € 83≥	479
51	Bisulfite-Free, Nanoscale Analysis of 5-Hydroxymethylcytosine at Single Base Resolution. <i>Journal of the American Chemical Society</i> , 2018 , 140, 13190-13194	16.4	42
50	Tyrosine Phosphorylation of Mitochondrial Creatine Kinase 1 Enhances a Druggable Tumor Energy Shuttle Pathway. <i>Cell Metabolism</i> , 2018 , 28, 833-847.e8	24.6	25
49	Queuosine modification protects cognate tRNAs against ribonuclease cleavage. <i>Rna</i> , 2018 , 24, 1305-13	13 .8	56
48	N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. <i>Nucleic Acids Research</i> , 2017 , 45, 6051-6063	20.1	339
47	Nm-seq maps 2SO-methylation sites in human mRNA with base precision. <i>Nature Methods</i> , 2017 , 14, 695-698	21.6	146
46	Selective Enzymatic Demethylation of N2,N2-Dimethylguanosine in RNA and Its Application in High-Throughput tRNA Sequencing. <i>Angewandte Chemie</i> , 2017 , 129, 5099-5102	3.6	3

45	Selective Enzymatic Demethylation of N ,N -Dimethylguanosine in RNA and Its Application in High-Throughput tRNA Sequencing. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 5017-5020	16.4	30
44	Ythdc2 is an N-methyladenosine binding protein that regulates mammalian spermatogenesis. <i>Cell Research</i> , 2017 , 27, 1115-1127	24.7	404
43	N-Allyladenosine: A New Small Molecule for RNA Labeling Identified by Mutation Assay. <i>Journal of the American Chemical Society</i> , 2017 , 139, 17213-17216	16.4	46
42	Ten-eleven translocation 2 interacts with forkhead box O3 and regulates adult neurogenesis. <i>Nature Communications</i> , 2017 , 8, 15903	17.4	65
41	N(6)-Methyladenosine Modification in a Long Noncoding RNA Hairpin Predisposes Its Conformation to Protein Binding. <i>Journal of Molecular Biology</i> , 2016 , 428, 822-833	6.5	122
40	ALKBH1-Mediated tRNA Demethylation Regulates Translation. <i>Cell</i> , 2016 , 167, 816-828.e16	56.2	197
39	5-Hydroxymethylcytosine-mediated alteration of transposon activity associated with the exposure to adverse in utero environments in human. <i>Human Molecular Genetics</i> , 2016 , 25, 2208-2219	5.6	21
38	The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA. <i>Nature</i> , 2016 , 530, 441-6	50.4	523
37	An active site rearrangement within the Tetrahymena group I ribozyme releases nonproductive interactions and allows formation of catalytic interactions. <i>Rna</i> , 2016 , 22, 32-48	5.8	5
36	Weakened N3 Hydrogen Bonding by 5-Formylcytosine and 5-Carboxylcytosine Reduces Their Base-Pairing Stability. <i>ACS Chemical Biology</i> , 2016 , 11, 470-7	4.9	45
35	Effects of cytosine modifications on DNA flexibility and nucleosome mechanical stability. <i>Nature Communications</i> , 2016 , 7, 10813	17.4	126
34	Cell-Penetrating Peptide-Modified Gold Nanoparticles for the Delivery of Doxorubicin to Brain Metastatic Breast Cancer. <i>Molecular Pharmaceutics</i> , 2016 , 13, 1843-54	5.6	75
33	N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. <i>Nature</i> , 2015 , 518, 560-4	50.4	988
32	Efficient and quantitative high-throughput tRNA sequencing. <i>Nature Methods</i> , 2015 , 12, 835-837	21.6	291
31	High-Resolution N6-Methyladenosine (m6A) Map Using Photo-Crosslinking-Assisted m6A Sequencing. <i>Angewandte Chemie</i> , 2015 , 127, 1607-1610	3.6	26
30	High-resolution N(6) -methyladenosine (m(6) A) map using photo-crosslinking-assisted m(6) A sequencing. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 1587-90	16.4	249
29	A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. <i>Nature Chemical Biology</i> , 2014 , 10, 93-5	11.7	1458
28	N6-methyladenosine-dependent regulation of messenger RNA stability. <i>Nature</i> , 2014 , 505, 117-20	50.4	1949

(2010-2014)

27	DNA hydroxymethylation profiling reveals that WT1 mutations result in loss of TET2 function in acute myeloid leukemia. <i>Cell Reports</i> , 2014 , 9, 1841-1855	10.6	183
26	Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. <i>Rna</i> , 2013 , 19, 1848-56	5.8	320
25	ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. <i>Molecular Cell</i> , 2013 , 49, 18-29	17.6	1627
24	Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. <i>Cell</i> , 2013 , 153, 678-	956.2	453
23	Experimental and computational evidence that ribonuclease A alters the transition state for RNA 2?-O-transphosphorylation. <i>FASEB Journal</i> , 2013 , 27, 998.6	0.9	
22	Synthesis of DNA oligos containing 2Sdeoxy-2Sfluoro-D-arabinofuranosyl-5-carboxylcytosine as hTDG inhibitor. <i>Tetrahedron</i> , 2012 , 68, 5145-5151	2.4	9
21	Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. <i>Cell</i> , 2012 , 149, 1368-	80 56.2	801
20	N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. <i>Nature Chemical Biology</i> , 2011 , 7, 885-7	11.7	1937
19	Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. <i>Science</i> , 2011 , 333, 1303-7	33.3	1980
18	Syntheses of two 5-hydroxymethyl-2Sdeoxycytidine phosphoramidites with TBDMS as the 5-hydroxymethyl protecting group and their incorporation into DNA. <i>Journal of Organic Chemistry</i> , 2011 , 76, 4182-8	4.2	35
17	5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. <i>Nature Neuroscience</i> , 2011 , 14, 1607-16	25.5	639
16	Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. <i>Science</i> , 2011 , 333, 1300-3	33.3	2426
15	Preparation of DNA containing 5-hydroxymethyl-2Sdeoxycytidine modification through phosphoramidites with TBDMS as 5-hydroxymethyl protecting group. <i>Current Protocols in Nucleic Acid Chemistry</i> , 2011 , Chapter 4, Unit 4.47.1-18	0.5	2
14	Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. <i>Nature Biotechnology</i> , 2011 , 29, 68-72	44.5	816
13	Syntheses of 5-formyl- and 5-carboxyl-dC containing DNA oligos as potential oxidation products of 5-hydroxymethylcytosine in DNA. <i>Organic Letters</i> , 2011 , 13, 3446-9	6.2	38
12	Synthesis of 2SN-methylamino-2Sdeoxyguanosine and 2SN,N-dimethylamino-2Sdeoxyguanosine and their incorporation into RNA by phosphoramidite chemistry. <i>Journal of Organic Chemistry</i> , 2011 , 76, 8718-25	4.2	1
11	The AlkB Domain of Mammalian ABH8 Catalyzes Hydroxylation of 5-Methoxycarbonylmethyluridine at the Wobble Position of tRNA. <i>Angewandte Chemie</i> , 2010 , 122, 9069-9072	3.6	6
10	Titelbild: The AlkB Domain of Mammalian ABH8 Catalyzes Hydroxylation of 5-Methoxycarbonylmethyluridine at the Wobble Position of tRNA (Angew. Chem. 47/2010). <i>Angewandte Chemie</i> , 2010 , 122, 8947-8947	3.6	

9	Cover Picture: The AlkB Domain of Mammalian ABH8 Catalyzes Hydroxylation of 5-Methoxycarbonylmethyluridine at the Wobble Position of tRNA (Angew. Chem. Int. Ed. 47/2010). <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 8765-8765	16.4	2
8	Efficient chemical synthesis of AppDNA by adenylation of immobilized DNA-5Smonophosphate. <i>Organic Letters</i> , 2009 , 11, 1067-70	6.2	12
7	Efficient synthesis of [2S18O]uridine and its incorporation into oligonucleotides: a new tool for mechanistic study of nucleotidyl transfer reactions by isotope effect analysis. <i>Journal of Organic Chemistry</i> , 2008 , 73, 309-11	4.2	27
6	Syntheses of (2\$3\$15N-amino-(2\$3\$deoxyguanosine and determination of their pKa values by 15N NMR spectroscopy. <i>Organic Letters</i> , 2007 , 9, 3057-60	6.2	8
5	The Mechanism of RNA Strand Scission: An Experimental Measure of the Brilsted Coefficient, fluc. <i>Angewandte Chemie</i> , 2007 , 119, 3788-3791	3.6	3
4	Identification of recognition residues for ligation-based detection and quantitation of pseudouridine and N6-methyladenosine. <i>Nucleic Acids Research</i> , 2007 , 35, 6322-9	20.1	83
3	Improved synthesis of 2Samino-2Sdeoxyguanosine and its phosphoramidite. <i>Bioorganic and Medicinal Chemistry</i> , 2006 , 14, 705-13	3.4	12
2	Efficient synthesis of 2\$3\$dideoxy-2\$amino-3\$thiouridine. <i>Organic Letters</i> , 2004 , 6, 2169-72	6.2	4
1	Synthesis of 2SC-beta-fluoromethyluridine. <i>Organic Letters</i> , 2003 , 5, 807-10	6.2	17