
## Elizabeth Castillo-Martinez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6500368/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Cellulose Nanocrystals in Sustainable Energy Systems. Advanced Sustainable Systems, 2022, 6, .                                                                                                                                                                                                                     | 2.7  | 15        |
| 2  | Sequential Fe Reduction, Involving Two Different Fe <sup>+</sup> Intermediates, in the Conversion<br>Reaction of Prussian Blue in Lithium-Ion Batteries. Chemistry of Materials, 2022, 34, 4660-4671.                                                                                                              | 3.2  | 0         |
| 3  | Electrochemical synthesis of <scp> MnO <sub>2</sub> </scp> / <scp>NiO</scp> / <scp>ZnO</scp> trijunction coated stainless steel substrate as a supercapacitor electrode and cyclic voltammetry behavior modeling using artificial neural network. International Journal of Energy Research, 2022, 46, 17163-17179. | 2.2  | 11        |
| 4  | High Conductivity in a Fluorine-Free K-Ion Polymer Electrolyte. ACS Applied Energy Materials, 2022, 5, 9009-9019.                                                                                                                                                                                                  | 2.5  | 9         |
| 5  | Sustainable materials for off-grid battery applications: advances, challenges and prospects.<br>Sustainable Energy and Fuels, 2021, 5, 310-331.                                                                                                                                                                    | 2.5  | 14        |
| 6  | Revisiting metal fluorides as lithium-ion battery cathodes. Nature Materials, 2021, 20, 841-850.                                                                                                                                                                                                                   | 13.3 | 109       |
| 7  | Lithiation phase behaviors of metal oxide anodes and extra capacities. Cell Reports Physical Science, 2021, 2, 100543.                                                                                                                                                                                             | 2.8  | 6         |
| 8  | Lithium ion storage in 1D and 2D redox active metal-organic frameworks. Electrochimica Acta, 2020,<br>341, 136063.                                                                                                                                                                                                 | 2.6  | 6         |
| 9  | Understanding LiOH Formation in a Li-O <sub>2</sub> Battery with Lil and H <sub>2</sub> O Additives.<br>ACS Catalysis, 2019, 9, 66-77.                                                                                                                                                                             | 5.5  | 57        |
| 10 | Hybrid biopolymer electrodes for lithium- and sodium-ion batteries in organic electrolytes.<br>Sustainable Energy and Fuels, 2018, 2, 836-842.                                                                                                                                                                     | 2.5  | 23        |
| 11 | Polymer-Templated LiFePO <sub>4</sub> /C Nanonetworks as High-Performance Cathode Materials for<br>Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 1646-1653.                                                                                                                                 | 4.0  | 71        |
| 12 | Polymeric Redoxâ€Active Electrodes for Sodiumâ€ion Batteries. ChemSusChem, 2018, 11, 311-319.                                                                                                                                                                                                                      | 3.6  | 19        |
| 13 | Understanding Fluoroethylene Carbonate and Vinylene Carbonate Based Electrolytes for Si Anodes in<br>Lithium Ion Batteries with NMR Spectroscopy. Journal of the American Chemical Society, 2018, 140,<br>9854-9867.                                                                                               | 6.6  | 219       |
| 14 | Temperature effect on the synthesis of lignin-derived carbons for electrochemical energy storage applications. Journal of Power Sources, 2018, 397, 296-306.                                                                                                                                                       | 4.0  | 34        |
| 15 | Electrochemical performance of novel O3 layered Al,Mg doped titanates as anode materials for Na-ion batteries. Materials Research Bulletin, 2017, 94, 199-207.                                                                                                                                                     | 2.7  | 8         |
| 16 | Advanced anode materials for sodium ion batteries: carbodiimides. MRS Advances, 2017, 2, 1165-1176.                                                                                                                                                                                                                | 0.5  | 11        |
| 17 | Metal–Organic Nanosheets Formed via Defect-Mediated Transformation of a Hafnium Metal–Organic<br>Framework. Journal of the American Chemical Society, 2017, 139, 5397-5404.                                                                                                                                        | 6.6  | 224       |
| 18 | Electrochemical performance of CuNCN for sodium ion batteries and comparison with ZnNCN and lithium ion batteries. Journal of Power Sources, 2017, 367, 130-137.                                                                                                                                                   | 4.0  | 37        |

| #  | ARTICLE                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Identifying the Structural Basis for the Increased Stability of the Solid Electrolyte Interphase Formed on Silicon with the Additive Fluoroethylene Carbonate. Journal of the American Chemical Society, 2017, 139, 14992-15004.                 | 6.6  | 176       |
| 20 | Naâ€lon Batteries for Large Scale Applications: A Review on Anode Materials and Solid Electrolyte<br>Interphase Formation. Advanced Energy Materials, 2017, 7, 1700463.                                                                          | 10.2 | 261       |
| 21 | Electrochemical characterization of NaFe2(CN)6 Prussian Blue as positive electrode for aqueous sodium-ion batteries. Electrochimica Acta, 2016, 210, 352-357.                                                                                    | 2.6  | 62        |
| 22 | Response to Comment on "Cycling Li-O <sub>2</sub> batteries via LiOH formation and decomposition―<br>Science, 2016, 352, 667-667.                                                                                                                | 6.0  | 11        |
| 23 | Response to Comment on "Cycling Li-O <sub>2</sub> batteries via LiOH formation and decompositionâ€.<br>Science, 2016, 352, 667-667.                                                                                                              | 6.0  | 32        |
| 24 | Highly water-soluble three-redox state organic dyes as bifunctional analytes. Energy and<br>Environmental Science, 2016, 9, 3521-3530.                                                                                                           | 15.6 | 66        |
| 25 | Towards environmentally friendly Na-ion batteries: Moisture and water stability of Na2Ti3O7. Journal of Power Sources, 2016, 324, 378-387.                                                                                                       | 4.0  | 39        |
| 26 | Higher voltage plateau cubic Prussian White for Na-ion batteries. Journal of Power Sources, 2016, 324,<br>766-773.                                                                                                                               | 4.0  | 91        |
| 27 | Identification of the critical synthesis parameters for enhanced cycling stability of Na-ion anode material Na2Ti3O7. Acta Materialia, 2016, 104, 125-130.                                                                                       | 3.8  | 27        |
| 28 | Optimizing the electrolyte and binder composition for Sodium Prussian Blue, Na 1-x Fe x+(1/3) (CN) 6 ·yH<br>2 O, as cathode in sodium ion batteries. Electrochimica Acta, 2016, 200, 123-130.                                                    | 2.6  | 42        |
| 29 | Carbodiimides: new materials applied as anode electrodes for sodium and lithium ion batteries.<br>Journal of Materials Chemistry A, 2016, 4, 1608-1611.                                                                                          | 5.2  | 69        |
| 30 | Response to Comment on "Cycling Li-Oâ,, batteries via LiOH formation and decomposition". Science, 2016, 352, 667.                                                                                                                                | 6.0  | 0         |
| 31 | Structure of H <sub>2</sub> Ti <sub>3</sub> O <sub>7</sub> and its evolution during sodium insertion as anode for Na ion batteries. Physical Chemistry Chemical Physics, 2015, 17, 6988-6994.                                                    | 1.3  | 46        |
| 32 | Composition and Evolution of the Solid-Electrolyte Interphase in<br>Na <sub>2</sub> Ti <sub>3</sub> O <sub>7</sub> Electrodes for Na-Ion Batteries: XPS and Auger<br>Parameter Analysis. ACS Applied Materials & Interfaces, 2015, 7, 7801-7808. | 4.0  | 164       |
| 33 | Oligomeric-Schiff bases as negative electrodes for sodium ion batteries: unveiling the nature of their active redox centers. Energy and Environmental Science, 2015, 8, 3233-3241.                                                               | 15.6 | 97        |
| 34 | Tunneling phenomena in aligned multi-walled carbon nanotube sheets: conductivity and Raman correlations. Materials Research Express, 2014, 1, 045603.                                                                                            | 0.8  | 2         |
| 35 | Polymeric Schiff Bases as Lowâ€Voltage Redox Centers for Sodiumâ€Ion Batteries. Angewandte Chemie -<br>International Edition, 2014, 53, 5341-5345.                                                                                               | 7.2  | 170       |
| 36 | High temperature structural transformations of few layer graphene nanoribbons obtained by unzipping carbon nanotubes. Journal of Materials Chemistry A, 2014, 2, 221-228.                                                                        | 5.2  | 32        |

| #  | Article                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | K1â^'Fe2+/3(CN)6·yH2O, Prussian Blue as a displacement anode for lithium ion batteries. Journal of<br>Power Sources, 2014, 271, 489-496.                                                                                                                               | 4.0  | 43        |
| 38 | Update on Na-based battery materials. A growing research path. Energy and Environmental Science, 2013, 6, 2312.                                                                                                                                                        | 15.6 | 886       |
| 39 | Comprehensive Insights into the Structural and Chemical Changes in Mixed-Anion FeOF Electrodes by<br>Using Operando PDF and NMR Spectroscopy. Journal of the American Chemical Society, 2013, 135,<br>4070-4078.                                                       | 6.6  | 124       |
| 40 | Reconstructed Ribbon Edges in Thermally Reduced Graphene Nanoribbons. Journal of Physical<br>Chemistry C, 2012, 116, 24006-24015.                                                                                                                                      | 1.5  | 20        |
| 41 | Oriented Graphene Nanoribbon Yarn and Sheet from Aligned Multiâ€Walled Carbon Nanotube Sheets.<br>Advanced Materials, 2012, 24, 5695-5701.                                                                                                                             | 11.1 | 67        |
| 42 | Photoinduced Optical Transparency in Dye-Sensitized Solar Cells Containing Graphene Nanoribbons.<br>Journal of Physical Chemistry C, 2011, 115, 25125-25131.                                                                                                           | 1.5  | 35        |
| 43 | Highly Stable Cooperative Distortion in a Weak Jahn–Teller d <sup>2</sup> Cation: Perovskite-Type<br>ScVO <sub>3</sub> Obtained by High-Pressure and High-Temperature Transformation from Bixbyite.<br>Journal of the American Chemical Society, 2011, 133, 8552-8563. | 6.6  | 31        |
| 44 | Biscrolling Nanotube Sheets and Functional Guests into Yarns. Science, 2011, 331, 51-55.                                                                                                                                                                               | 6.0  | 338       |
| 45 | Thermal actuation of graphene oxide nanoribbon mats. Chemical Physics Letters, 2011, 505, 31-36.                                                                                                                                                                       | 1.2  | 15        |
| 46 | Magneto-thermal and dielectric properties of biferroic YCrO3 prepared by combustion synthesis.<br>Journal of Solid State Chemistry, 2010, 183, 1863-1871.                                                                                                              | 1.4  | 88        |
| 47 | Spinel to CaFe <sub>2</sub> O <sub>4</sub> Transformation: Mechanism and Properties of<br>β-CdCr <sub>2</sub> O <sub>4</sub> . Inorganic Chemistry, 2010, 49, 2827-2833.                                                                                               | 1.9  | 29        |
| 48 | The A(II)Cr(IV)O3 (A=Sr, Ca, Pb) â€~simple' perovskites. Structure and properties: magnetic structure of<br>CaCrO3. High Pressure Research, 2009, 29, 254-260.                                                                                                         | 0.4  | 14        |
| 49 | Structure, microstructure and magnetic properties of Sr1â^'xCaxCrO3 (0⩽x⩽1). Journal of Solid State<br>Chemistry, 2008, 181, 895-904.                                                                                                                                  | 1.4  | 37        |
| 50 | Structure and microstructure of the high pressure synthesised misfit layer compound [Sr2O2][CrO2]1.85. Journal of Solid State Chemistry, 2008, 181, 1840-1847.                                                                                                         | 1.4  | 10        |
| 51 | Electron energy loss spectroscopy in ACrO <sub>3</sub> (A = Ca, Sr and Pb) perovskites. Journal of Physics Condensed Matter, 2008, 20, 505207.                                                                                                                         | 0.7  | 17        |
| 52 | Increasing the Structural Complexity of Chromium(IV) Oxides by High-Pressure and High-Temperature<br>Reactions of CrO <sub>2</sub> . Inorganic Chemistry, 2008, 47, 8526-8542.                                                                                         | 1.9  | 22        |
| 53 | A Study of [Cr-O6]-based rutile analogues by means of EELS. Materials Research Society Symposia<br>Proceedings, 2008, 1148, 1.                                                                                                                                         | 0.1  | 1         |
| 54 | Revisiting the High Pressure Ternary Oxides of Cr(IV): Structures and Microstructures. , 2008, , .                                                                                                                                                                     |      | 1         |

| #  | Article                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Revisiting the Sr–Cr(IV)–O system at high pressure and temperature with special reference to Sr3Cr2O7. Solid State Sciences, 2007, 9, 564-573.                           | 1.5 | 27        |
| 56 | High-temperature neutron diffraction study of the cation ordered perovskites TbBaMn2O5+x and<br>TbBaMn2O5.5â^'y. Journal of Solid State Chemistry, 2006, 179, 3505-3510. | 1.4 | 16        |
| 57 | Optical and morphological study of disorder in opals. Journal of Applied Physics, 2005, 97, 063502.                                                                      | 1.1 | 53        |
| 58 | Optical and morphological study of compound polymer opals. , 2004, , .                                                                                                   |     | 0         |
| 59 | Optical study of the pseudogap in thickness and orientation controlled artificial opals. Physical<br>Review B, 2003, 68, .                                               | 1.1 | 188       |