
James W Murray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6500289/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The surface chemistry of hydrous manganese dioxide. Journal of Colloid and Interface Science, 1974, 46, 357-371.	5.0	452
2	The interaction of metal ions at the manganese dioxide-solution interface. Geochimica Et Cosmochimica Acta, 1975, 39, 505-519.	1.6	403
3	Scavenging residence times of trace metals and surface chemistry of sinking particles in the deep ocean. Deep-sea Research Part A, Oceanographic Research Papers, 1981, 28, 101-121.	1.6	336
4	Oil's tipping point has passed. Nature, 2012, 481, 433-435.	13.7	302
5	Large changes in oceanic nutrient inventories from glacial to interglacial periods. Nature, 1995, 376, 755-758.	13.7	295
6	Functional responses for zooplankton feeding on multiple resources: a review of assumptions and biological dynamics. Deep-Sea Research Part II: Topical Studies in Oceanography, 2003, 50, 2847-2875.	0.6	269
7	The determination of chromium species in natural waters. Analytica Chimica Acta, 1978, 99, 275-282.	2.6	253
8	The oxidation of cobalt(II) adsorbed on manganese dioxide. Geochimica Et Cosmochimica Acta, 1979, 43, 781-787.	1.6	252
9	Surface analysis and the adsorption of Co(II) on goethite. Journal of Colloid and Interface Science, 1983, 95, 398-409.	5.0	252
10	Suboxic trace metal geochemistry in the Eastern Tropical North Pacific. Geochimica Et Cosmochimica Acta, 2002, 66, 1139-1158.	1.6	250
11	Oxidation of Mn(II): Initial mineralogy, oxidation state and ageing. Geochimica Et Cosmochimica Acta, 1985, 49, 463-470.	1.6	247
12	The adsorption of Cu, Pb, Zn, and Cd on goethite from major ion seawater. Geochimica Et Cosmochimica Acta, 1982, 46, 1253-1265.	1.6	243
13	The adsorption of plutonium IV and V on goethite. Geochimica Et Cosmochimica Acta, 1985, 49, 2297-2307.	1.6	225
14	Interstitial water chemistry in the sediments of Saanich Inlet. Geochimica Et Cosmochimica Acta, 1978, 42, 1011-1026.	1.6	215
15	Modeling sorption of divalent metal cations on hydrous manganese oxide using the diffuse double layer model. Applied Geochemistry, 2004, 19, 29-53.	1.4	214
16	Oceanic trace metal scavenging: the importance of particle concentration. Deep-sea Research Part A, Oceanographic Research Papers, 1988, 35, 227-246.	1.6	213
17	Hydrographic properties and ventilation of the Black Sea. Deep-sea Research Part A, Oceanographic Research Papers, 1991, 38, S663-S689.	1.6	209
18	Denitrification in continental shelf sediments has major impact on the oceanic nitrogen budget. Global Biogeochemical Cycles, 1987, 1, 97-116.	1.9	206

#	Article	IF	CITATIONS
19	Export flux of particulate organic carbon from the central equatorial Pacific determined using a combined drifting trap-234Th approach. Deep-Sea Research Part II: Topical Studies in Oceanography, 1996, 43, 1095-1132.	0.6	200
20	The oxidation state of manganese in marine sediments and ferromanganese nodules. Geochimica Et Cosmochimica Acta, 1984, 48, 1237-1247.	1.6	192
21	Variations in the chemistry of the Black Sea on a time scale of decades (1960–1995). Journal of Marine Systems, 2001, 31, 217-243.	0.9	167
22	Nutrient assimilation, export production and 234Th scavenging in the eastern equatorial Pacific. Deep-sea Research Part A, Oceanographic Research Papers, 1989, 36, 1471-1489.	1.6	163
23	Trace metal remobilization in the interstitial waters of red clay and hemipelagic marine sediments. Earth and Planetary Science Letters, 1983, 64, 213-230.	1.8	161
24	Uranium deposition in saanich inlet sediments, vancouver island. Geochimica Et Cosmochimica Acta, 1989, 53, 2205-2213.	1.6	154
25	A model of oxygen reduction, denitrification, and organic matter mineralization in marine sediments1. Limnology and Oceanography, 1982, 27, 610-623.	1.6	153
26	The geochemical cycling of trace elements in a biogenic meromictic lake. Geochimica Et Cosmochimica Acta, 1994, 58, 3993-4008.	1.6	147
27	A U.S. JGOFS process study in the equatorial Pacific (EqPac): Introduction. Deep-Sea Research Part II: Topical Studies in Oceanography, 1995, 42, 275-293.	0.6	147
28	The surface chemistry of ÎMnO2 in major ion sea water. Geochimica Et Cosmochimica Acta, 1982, 46, 1041-1052.	1.6	146
29	Methane production, sulfate reduction and competition for substrates in the sediments of Lake Washington. Geochimica Et Cosmochimica Acta, 1989, 53, 409-416.	1.6	142
30	Thorium speciation in seawater. Marine Chemistry, 2006, 100, 250-268.	0.9	142
31	Iron isotopes in the seawater of the equatorial Pacific Ocean: New constraints for the oceanic iron cycle. Earth and Planetary Science Letters, 2011, 306, 1-10.	1.8	139
32	Oxidation-Reduction Environments. Advances in Chemistry Series, 1995, , 157-176.	0.6	137
33	The interaction of cobalt with hydrous manganese dioxide. Geochimica Et Cosmochimica Acta, 1975, 39, 635-647.	1.6	131
34	The geochemistry of iron in puget sound. Geochimica Et Cosmochimica Acta, 1978, 42, 9-19.	1.6	130
35	Aerobic respiration in pelagic marine sediments. Geochimica Et Cosmochimica Acta, 1982, 46, 1101-1120.	1.6	128
36	The surface chemistry of sediments from the Panama Basin: The influence of Mn oxides on metal adsorption. Geochimica Et Cosmochimica Acta, 1986, 50, 2235-2243.	1.6	125

#	Article	IF	CITATIONS
37	A model for coupled sulfate reduction and methane oxidation in the sediments of Saanich Inlet. Geochimica Et Cosmochimica Acta, 1984, 48, 993-1004.	1.6	124
38	Phytoplankton and Their Role in Primary, New, and Export Production. , 2003, , 99-121.		124
39	The cycling of iron and manganese in the water column of Lake Sammamish, Washington. Limnology and Oceanography, 1992, 37, 510-528.	1.6	117
40	The mechanisms of Co(II) oxidation on synthetic birnessite. Geochimica Et Cosmochimica Acta, 1983, 47, 1399-1403.	1.6	114
41	Lateral injection of oxygen with the Bosporus plume—fingers of oxidizing potential in the Black Sea. Limnology and Oceanography, 2003, 48, 2369-2376.	1.6	110
42	Modeling exchangeable NH ₄ ⁺ adsorption in marine sediments: Process and controls of adsorption1,2. Limnology and Oceanography, 1982, 27, 99-110.	1.6	108
43	Lead-210, polonium-210, manganese and iron in the Cariaco Trench. Deep-sea Research Part A, Oceanographic Research Papers, 1980, 27, 119-135.	1.6	102
44	The biogeochemical cycling of trace metals in the water column of Lake Sammamish, Washington: Response to seasonally anoxic conditions. Limnology and Oceanography, 1992, 37, 529-548.	1.6	98
45	Free-living and aggregate-associated Planctomycetes in the Black Sea. FEMS Microbiology Ecology, 2012, 80, 402-416.	1.3	96
46	Metal-solid interactions in the marine environment: Estimating apparent equilibrium binding constants. Geochimica Et Cosmochimica Acta, 1983, 47, 1091-1098.	1.6	94
47	Metabolic strategies of free-living and aggregate-associated bacterial communities inferred from biologic and chemical profiles in the Black Sea suboxic zone. FEMS Microbiology Ecology, 2011, 78, 586-603.	1.3	94
48	Marine scavenging: Trace metal adsorption by interfacial sediment from MANOP Site H. Geochimica Et Cosmochimica Acta, 1984, 48, 921-929.	1.6	92
49	Nitrification and denitrification in marine sediments from Puget Sound1. Limnology and Oceanography, 1977, 22, 804-813.	1.6	85
50	234Th, 210Pb, 210Po and stable Pb in the central equatorial Pacific: Tracers for particle cycling. Deep-Sea Research Part I: Oceanographic Research Papers, 2005, 52, 2109-2139.	0.6	83
51	Carbonate saturation and the effect of pressure on the alkalinity of interstitial waters from the Guatemala Basin. Geochimica Et Cosmochimica Acta, 1980, 44, 963-972.	1.6	82
52	Diversity and Distribution of Planctomycetes and Related Bacteria in the Suboxic Zone of the Black Sea. Applied and Environmental Microbiology, 2006, 72, 3079-3083.	1.4	79
53	Concentration and natural stable isotope profiles of nitrogen species in theBlack Sea. Marine Chemistry, 2008, 111, 90-105.	0.9	78
54	Western Pacific coastal sources of iron, manganese, and aluminum to the Equatorial Undercurrent. Global Biogeochemical Cycles, 2010, 24, .	1.9	78

#	Article	IF	CITATIONS
55	The oxidation states of cobalt and selected metals in Pacific ferromanganese nodules. Geochimica Et Cosmochimica Acta, 1982, 46, 755-759.	1.6	77
56	interaction: The effect of carbonate alkalinity on adsorbed thorium. Geochimica Et Cosmochimica Acta, 1987, 51, 243-250.	1.6	76
57	The influence of the major ions of seawater on the adsorption of simple organic acids by goethite. Geochimica Et Cosmochimica Acta, 1987, 51, 1151-1160.	1.6	75
58	Basic Processes of Black Sea Biogeochemistry. Oceanography, 2005, 18, 24-35.	0.5	72
59	Organic matter diagenesis in the northeast Pacific: transition from aerobic red clay to suboxic hemipelagic sediments. Deep-sea Research Part A, Oceanographic Research Papers, 1990, 37, 59-80.	1.6	69
60	The behavior of scavenged isotopes in marine anoxic environments: 210Pb and 210Po in the water column of the Black Sea. Geochimica Et Cosmochimica Acta, 1994, 58, 1795-1811.	1.6	66
61	Iron sources and dissolvedâ€particulate interactions in the seawater of the Western Equatorial Pacific, iron isotope perspectives. Global Biogeochemical Cycles, 2014, 28, 1044-1065.	1.9	66
62	Trace metal composition of suspended particulate matter in the water column of the Black Sea. Marine Chemistry, 2011, 126, 207-228.	0.9	60
63	234Th and particle cycling in the central equatorial Pacific. Deep-Sea Research Part II: Topical Studies in Oceanography, 1997, 44, 2049-2083.	0.6	59
64	Processes controlling the redox budget for the oxic/anoxic water column of the Black Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53, 1817-1841.	0.6	59
65	Organic matter diagenesis in freshwater sediments: The alkalinity and total CO ₂ balance and methane production in the sediments of Lake Washington1,2. Limnology and Oceanography, 1984, 29, 1218-1230.	1.6	58
66	Hydrographic Observations on the Red Sea Brines indicate a Marked Increase in Temperature. Nature, 1971, 231, 37-38.	13.7	57
67	Nickel, cadmium, and copper in the northeast Pacific off the coast of Washington1,2. Limnology and Oceanography, 1984, 29, 711-720.	1.6	56
68	EqPac: A Process Study in the Central Equatorial Pacific. Oceanography, 1992, 5, 134-142.	0.5	56
69	A physical–biochemical model of plankton productivity and nitrogen cycling in the Black Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 1999, 46, 597-636.	0.6	56
70	Temporal variations of ²³⁴ Th activity in the water column of Dabob Bay: Particle scavenging. Limnology and Oceanography, 1992, 37, 296-314.	1.6	54
71	Modeling Metal Removal onto Natural Particles Formed during Mixing of Acid Rock Drainage with Ambient Surface Water. Environmental Science & Technology, 2002, 36, 484-492.	4.6	54
72	Modeling redox cycling across the suboxic–anoxic interface zone in the Black Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 2001, 48, 761-787.	0.6	52

#	Article	IF	CITATIONS
73	Export flux in the western and central equatorial Pacific: zonal and temporal variability. Deep-Sea Research Part I: Oceanographic Research Papers, 2000, 47, 901-936.	0.6	51
74	The geochemical cycling of stable Pb, 210Pb, and 210Po in seasonally anoxic Lake Sammamish, Washington, USA. Geochimica Et Cosmochimica Acta, 1995, 59, 4845-4861.	1.6	50
75	An ecosystem model with iron limitation of primary production in the equatorial Pacific at 140°W. Deep-Sea Research Part II: Topical Studies in Oceanography, 1997, 44, 2221-2249.	0.6	50
76	Organic carbon to 234Th ratios of marine organic matter. Marine Chemistry, 2006, 100, 323-336.	0.9	50
77	Vertical distribution of mercury species at two sites in the Western Black Sea. Marine Chemistry, 2008, 111, 77-89.	0.9	50
78	Anthropogenic chlorofluorocarbons in the Black Sea and the Sea of Marmara. Deep-Sea Research Part I: Oceanographic Research Papers, 2002, 49, 895-913.	0.6	49
79	Ventilation of the Black Sea pycnocline. Parameterization of convection, numerical simulations and validations against observed chlorofluorocarbon data. Deep-Sea Research Part I: Oceanographic Research Papers, 2004, 51, 2137-2169.	0.6	49
80	lce-sheet modulation of deglacial North American monsoon intensification. Nature Geoscience, 2018, 11, 848-852.	5.4	49
81	The 1988 Black Sea Oceanographic Expedition: introduction and summary. Deep-sea Research Part A, Oceanographic Research Papers, 1991, 38, S655-S661.	1.6	48
82	The effect of iron- and light-limitation on phytoplankton communities of deep chlorophyll maxima of the western Pacific Ocean. Journal of Marine Research, 2010, 68, 283-308.	0.3	47
83	The 1988 Black Sea Oceanographic Expedition: Overview and New Discoveries. Oceanography, 1989, 2, 15-21.	0.5	47
84	The Contrasting Geochemistry of Manganese and Chromium in the Eastern Tropical Pacific Ocean. , 1983, , 643-669.		46
85	The geochemistry of manganese in the northeast Pacific Ocean off Washington1,2. Limnology and Oceanography, 1985, 30, 81-92.	1.6	45
86	The distribution and behaviour of 230Th and 231Pa at an ocean margin, Baja California, Mexico. Geochimica Et Cosmochimica Acta, 1986, 50, 2499-2507.	1.6	44
87	Estimation of new production in the tropical Pacific. Global Biogeochemical Cycles, 2001, 15, 101-112.	1.9	44
88	Decline of the Black Sea oxygen inventory. Biogeosciences, 2016, 13, 1287-1297.	1.3	43
89	Methane production in the sulfate-depleted sediments of two marine basins. Geochimica Et Cosmochimica Acta, 1990, 54, 403-411.	1.6	42
90	Silicon-nitrogen coupling in the equatorial Pacific upwelling zone. Global Biogeochemical Cycles, 1999, 13, 715-726.	1.9	41

#	Article	IF	CITATIONS
91	Species and δ15N Signatures of Nitrogen Transformations in the Suboxic Zone of the Black Sea. Oceanography, 2005, 18, 36-47.	0.5	41
92	Mechanisms Controlling the Distribution of Trace Elements in Oceans and Lakes. Advances in Chemistry Series, 1987, , 153-184.	0.6	40
93	Particulate carbon and nitrogen fluxes and compositions in the central equatorial Pacific. Deep-Sea Research Part I: Oceanographic Research Papers, 2001, 48, 1999-2023.	0.6	40
94	Trace metal composition of particulate matter of the Danube River and Turkish rivers draining into the Black Sea. Marine Chemistry, 2008, 111, 63-76.	0.9	40
95	An inland sea high nitrateâ€low chlorophyll (HNLC) region with naturally high pCO ₂ . Limnology and Oceanography, 2015, 60, 957-966.	1.6	38
96	234Th/238U disequilibria in the Black Sea. Deep-sea Research Part A, Oceanographic Research Papers, 1991, 38, S855-S873.	1.6	36
97	Chapter 2. IRON OXIDES. , 1979, , 47-98.		32
98	Spatial and temporal variability in the chemical properties of the oxic and suboxic layers of the Black Sea. Journal of Marine Systems, 2014, 135, 29-43.	0.9	31
99	Biogeochemical controls on new production in the tropical Pacific. Deep-Sea Research Part II: Topical Studies in Oceanography, 2002, 49, 2619-2648.	0.6	29
100	Neutral aldoses as source indicators for marine snow. Marine Chemistry, 2008, 108, 195-206.	0.9	29
101	Stimulation of Autotrophic Denitrification by Intrusions of the Bosporus Plume into the Anoxic Black Sea. Frontiers in Microbiology, 2012, 3, 257.	1.5	29
102	Chapter 10 Mechanisms of Removal of Manganese, Iron and Other Trace Metals from Sea Water. Elsevier Oceanography Series, 1977, 15, 291-325.	0.1	27
103	Understanding the Dynamics of the Oxicâ€Anoxic Interface in the Black Sea. Geophysical Research Letters, 2018, 45, 864-871.	1.5	27
104	Modeling the distribution of nitrogen species and isotopes in the water column of the Black Sea. Marine Chemistry, 2008, 111, 106-124.	0.9	26
105	Zonal variability of plankton and particle export flux in the equatorial Pacific upwelling between 165° E and 150° W. Oceanologica Acta: European Journal of Oceanology - Revue Europeene De Oceanologie, 1999, 22, 57-66.	0.7	25
106	Particulate iron, aluminum, and manganese in the Pacific equatorial undercurrent and low latitude western boundary current sources. Marine Chemistry, 2012, 142-144, 54-67.	0.9	24
107	JGOFS studies in the equatorial Pacific. Deep-Sea Research Part II: Topical Studies in Oceanography, 1997, 44, 1759-1763.	0.6	23

108 THE SUBOXIC TRANSITION ZONE IN THE BLACK SEA. , 2006, , 105-138.

23

#	Article	IF	CITATIONS
109	Biogeochemical impact of a model western iron source in the Pacific Equatorial Undercurrent. Deep-Sea Research Part I: Oceanographic Research Papers, 2009, 56, 2115-2128.	0.6	22
110	Concurrent activity of anammox and denitrifying bacteria in the Black Sea. Frontiers in Microbiology, 2012, 3, 256.	1.5	22
111	Peak Oil and Energy Independence: Myth and Reality. Eos, 2013, 94, 245-246.	0.1	22
112	Sensitivity of 234Th export to physical processes in the central equatorial Pacific. Deep-Sea Research Part I: Oceanographic Research Papers, 1999, 46, 831-854.	0.6	21
113	Fallout plutonium in two oxic-anoxic environments1. Limnology and Oceanography, 1986, 31, 1110-1121.	1.6	18
114	Marine scavenging: The relative importance of mass transfer and reaction rates. Limnology and Oceanography, 1996, 41, 82-88.	1.6	18
115	Interdisciplinary Studies Integrating the Black Sea Biogeochemistry and Circulation Dynamics. Oceanography, 2002, 15, 4-11.	0.5	18
116	Carbon, nitrogen and phosphorus in the black sea. Deep Sea Research and Oceanographic Abstracts, 1973, 20, 803-818.	0.3	17
117	Geochemical composition of Aeolian dust and surface deposits from the Qatar Peninsula. Chemical Geology, 2018, 476, 24-45.	1.4	16
118	Surface of Goethite (Î \pm FeOOH) in Seawater. ACS Symposium Series, 1979, , 275-298.	0.5	15
119	9 The Oceans. International Geophysics, 1992, 50, 175-211.	0.6	15
120	Simulations of the Black Sea pelagic ecosystem by 1â€Ð, vertically resolved, physical–biochemical models. Fisheries Oceanography, 1998, 7, 300-304.	0.9	13
121	Hydrographic Variability in the Black Sea. , 1991, , 1-16.		12
122	Oxic, suboxic, and anoxic conditions in the Black Sea. , 2007, , 1-21.		12
123	Detection of Transient Denitrification During a High Organic Matter Event in the Black Sea. Global Biogeochemical Cycles, 2019, 33, 143-162.	1.9	11
124	Use of the Coastal Zone Color Scanner for EqPac Planning. Oceanography, 1992, 5, 143-145.	0.5	10
125	Controls on new production: the role of iron and physical processes. Deep-Sea Research Part II: Topical Studies in Oceanography, 2002, 49, 2649-2668.	0.6	10
126	The clay mineralogy of marine sediments in the North Atlantic at 20° N. latitude. Earth and Planetary Science Letters, 1970, 10, 39-43.	1.8	9

#	Article	IF	CITATIONS
127	A rate for the scavenging of fine particles by macroaggregates in a deep estuary. Journal of Geophysical Research, 1991, 96, 783-790.	3.3	9
128	Water column distribution of 230Th and 232Th in the Black Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 1994, 41, 101-112.	0.6	8
129	Limitations of Oil Production to the IPCC Scenarios: The New Realities of US and Global Oil Production. BioPhysical Economics and Resource Quality, 2016, 1, 1.	2.4	8
130	Trace element composition of size-fractionated suspended particulate matter samples from the Qatari Exclusive Economic Zone of the Arabian Gulf: the role of atmospheric dust. Biogeosciences, 2020, 17, 381-404.	1.3	8
131	Panel 2: The nature of reactions on marine particle surfaces. Applied Geochemistry, 1988, 3, 19-26.	1.4	5
132	Phytoplankton biomass, primary production and chemoautotrophic production of the Western Black Sea in April 2003. Journal of Marine Systems, 2019, 198, 103183.	0.9	5
133	Climatic Drivers of Deglacial SST Variability in the Eastern Pacific. Paleoceanography and Paleoclimatology, 2021, 36, e2021PA004264.	1.3	3
134	Community plans for future of ocean biogeochemical research. Eos, 1998, 79, 372-372.	0.1	2
135	The Oceans. International Geophysics, 2000, 72, 230-278.	0.6	2
136	Glacial warming in the Eastern Pacific Warm Pool. Geophysical Research Letters, 0, , .	1.5	0