Cheng Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6500106/publications.pdf

Version: 2024-02-01

102	1,401	20	29
papers	citations	h-index	g-index
106	106	106	1117 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Establishment and characterization of an ovarian cell line of the silkworm, Bombyx mori. Tissue and Cell, 2010, 42, 42-46.	1.0	83
2	Establishment of a highly efficient virus-inducible CRISPR/Cas9 system in insect cells. Antiviral Research, 2016, 130, 50-57.	1.9	55
3	Inhibition of BmNPV replication in silkworm cells using inducible and regulated artificial microRNA precursors targeting the essential viral gene lef-11. Antiviral Research, 2014, 104, 143-152.	1.9	48
4	Body Shape and Coloration of Silkworm Larvae Are Influenced by a Novel Cuticular Protein. Genetics, 2017, 207, 1053-1066.	1.2	43
5	PI3K/Akt Activated by GPR30 and Src Regulates $17\hat{l}^2$ -Estradiol-Induced Cultured Immature Boar Sertoli Cells Proliferation. Reproductive Sciences, 2017, 24, 57-66.	1.1	37
6	Bombyx mori nucleopolyhedrovirus ORF79 is a per os infectivity factor associated with the PIF complex. Virus Research, 2014, 184, 62-70.	1.1	36
7	Aspartate Decarboxylase is Required for a Normal Pupa Pigmentation Pattern in the Silkworm, Bombyx mori. Scientific Reports, 2015, 5, 10885.	1.6	33
8	Ara-c induces cell cycle G1/S arrest by inducing upregulation of the INK4 family gene or directly inhibiting the formation of the cell cycle-dependent complex CDK4/cyclin D1. Cell Cycle, 2019, 18, 2293-2306.	1.3	33
9	C-lysozyme contributes to antiviral immunity in Bombyx mori against nucleopolyhedrovirus infection. Journal of Insect Physiology, 2018, 108, 54-60.	0.9	32
10	A newly discovered member of the Atlastin family, BmAtlastin-n, has an antiviral effect against BmNPV in Bombyx mori. Scientific Reports, 2016, 6, 28946.	1.6	30
11	Rhodiola rosea extends lifespan and improves stress tolerance in silkworm, Bombyx mori. Biogerontology, 2016, 17, 373-381.	2.0	29
12	<i>>p27</i> inhibits CDK6/CCND1 complex formation resulting in cell cycle arrest and inhibition of cell proliferation. Cell Cycle, 2018, 17, 2335-2348.	1.3	28
13	Identification of Genes that Control Silk Yield by RNA Sequencing Analysis of Silkworm (Bombyx mori) Strains of Variable Silk Yield. International Journal of Molecular Sciences, 2018, 19, 3718.	1.8	27
14	Excision of Nucleopolyhedrovirus Form Transgenic Silkworm Using the CRISPR/Cas9 System. Frontiers in Microbiology, 2018, 9, 209.	1.5	27
15	BmREEPa Is a Novel Gene that Facilitates BmNPV Entry into Silkworm Cells. PLoS ONE, 2015, 10, e0144575.	1.1	26
16	QTL analysis of cocoon shell weight identifies BmRPL18 associated with silk protein synthesis in silkworm by pooling sequencing. Scientific Reports, 2017, 7, 17985.	1.6	25
17	Mitochondrial Apoptotic Pathway Is Activated by H2O2-Mediated Oxidative Stress in BmN-SWU1 Cells from Bombyx mori Ovary. PLoS ONE, 2015, 10, e0134694.	1.1	24
18	Bombyx mori Nuclear Polyhedrosis Virus (BmNPV) Induces Host Cell Autophagy to Benefit Infection. Viruses, 2018, 10, 14.	1.5	24

#	Article	IF	Citations
19	CRISPR/Cas12a Mediated Genome Editing Enhances Bombyx mori Resistance to BmNPV. Frontiers in Bioengineering and Biotechnology, 2020, 8, 841.	2.0	24
20	Oligomerization of Baculovirus LEF-11 Is Involved in Viral DNA Replication. PLoS ONE, 2015, 10, e0144930.	1.1	22
21	Cuticular protein defective Bamboo mutant of Bombyx mori is sensitive to environmental stresses. Pesticide Biochemistry and Physiology, 2018, 148, 111-115.	1.6	21
22	Characterization and Expression of Genes Involved in the Ethylene Biosynthesis and Signal Transduction during Ripening of Mulberry Fruit. PLoS ONE, 2015, 10, e0122081.	1.1	20
23	Molecular cloning, expression, purification and characterization of a novel cellulase gene (Bh-EGasel) in the beetle Batocera horsfieldi. Gene, 2016, 576, 45-51.	1.0	20
24	Establishment of a baculovirus-inducible CRISPR/Cas9 system for antiviral research in transgenic silkworms. Applied Microbiology and Biotechnology, 2018, 102, 9255-9265.	1.7	20
25	Comparative analysis of the integument transcriptomes of the black dilute mutant and the wild-type silkworm Bombyx mori. Scientific Reports, 2016, 6, 26114.	1.6	18
26	Baculovirus LEF-11 Hijack Host ATPase ATAD3A to Promote Virus Multiplication in Bombyx mori cells. Scientific Reports, 2017, 7, 46187.	1.6	18
27	BmNHR96 participate BV entry of BmN-SWU1 cells via affecting the cellular cholesterol level. Biochemical and Biophysical Research Communications, 2017, 482, 1484-1490.	1.0	18
28	Differential Susceptibilities to BmNPV Infection of Two Cell Lines Derived from the Same Silkworm Ovarian Tissues. PLoS ONE, 2014, 9, e105986.	1.1	17
29	Role of Bmbuffy in hydroxycamptothecine-induced apoptosis in BmN-SWU1 cells of the silkworm, Bombyx mori. Biochemical and Biophysical Research Communications, 2014, 447, 237-243.	1.0	17
30	Effects of starvation and hormones on DNA synthesis in silk gland cells of the silkworm, <i>Bombyx mori</i> . Insect Science, 2016, 23, 569-578.	1.5	17
31	Role of AMPK in the expression of tight junction proteins in heat-treated porcine Sertoli cells. Theriogenology, 2018, 121, 42-52.	0.9	17
32	Combined Effect of Cameo2 and CBP on the Cellular Uptake of Lutein in the Silkworm, Bombyx mori. PLoS ONE, 2014, 9, e86594.	1.1	16
33	BmICE-2 is a novel pro-apoptotic caspase involved in apoptosis in the silkworm, Bombyx mori. Biochemical and Biophysical Research Communications, 2014, 445, 100-106.	1.0	15
34	Comparative transcriptome profiling of a thermal resistant vs. sensitive silkworm strain in response to high temperature under stressful humidity condition. PLoS ONE, 2017, 12, e0177641.	1.1	15
35	Construction of a One-Vector Multiplex CRISPR/Cas9 Editing System to Inhibit Nucleopolyhedrovirus Replication in Silkworms. Virologica Sinica, 2019, 34, 444-453.	1.2	15
36	Label-free proteomic analysis of silkworm midgut infected by Bombyx mori nuclear polyhedrosis virus. Journal of Proteomics, 2019, 200, 40-50.	1.2	15

#	Article	IF	CITATIONS
37	Evolutionary and functional analyses of the interaction between the <i>Bombyx mori</i> inhibitor of apoptosis (IAP) and nucleopolyhedrovirus IAPs. Insect Science, 2020, 27, 463-474.	1.5	15
38	Genome-wide identification and analysis of elongase of very long chain fatty acid genes in the silkworm, $\langle i \rangle$ Bombyx mori $\langle i \rangle$. Genome, 2018, 61, 167-176.	0.9	14
39	Construction and application of an HSP70 promoter-inducible genome editing system in transgenic silkworm to induce resistance to Nosema bombycis. Applied Microbiology and Biotechnology, 2019, 103, 9583-9592.	1.7	14
40	BmAtg13 promotes the replication and proliferation of Bombyx mori nucleopolyhedrovirus. Pesticide Biochemistry and Physiology, 2019, 157, 143-151.	1.6	14
41	Screening, cloning and expression analysis of a cellulase derived from the causative agent of hypertrophy sorosis scleroteniosis, Ciboria shiraiana. Gene, 2015, 565, 221-227.	1.0	13
42	Effects of 10-hydroxycamptothecin on intrinsic mitochondrial pathway in silkworm BmN-SWU1 cells. Pesticide Biochemistry and Physiology, 2016, 127, 15-20.	1.6	13
43	Comparative mitochondrial genomes provide new insights into the true wild progenitor and origin of domestic silkworm Bombyx mori. International Journal of Biological Macromolecules, 2019, 131, 176-183.	3.6	13
44	Cocoonase is indispensable for Lepidoptera insects breaking the sealed cocoon. PLoS Genetics, 2020, 16, e1009004.	1.5	13
45	Identification of a novel nuclear localization signal of baculovirus late expression factor 11. Virus Research, 2014, 184, 111-119.	1.1	12
46	DNA Synthesis during Endomitosis Is Stimulated by Insulin via the PI3K/Akt and TOR Signaling Pathways in the Silk Gland Cells of Bombyx mori. International Journal of Molecular Sciences, 2015, 16, 6266-6280.	1.8	12
47	Identification of a <i>PP2A</i> gene in <i>Bombyx mori</i> with antiviral function against <i>B. mori</i> nucleopolyhedrovirus. Insect Science, 2020, 27, 687-696.	1.5	12
48	Identification and characterization of the BmCyclin L1-BmCDK11A/B complex in relation to cell cycle regulation. Cell Cycle, 2017, 16, 861-868.	1.3	11
49	Identification and characterization of a new long noncoding RNA <i>iabâ€1 </i> in the Hox cluster of silkworm, <i>Bombyx mori</i> identification of <i>iabâ€1 </i> Journal of Cellular Biochemistry, 2019, 120, 17283-17292.	1.2	11
50	Gene editing the BmNPV inhibitor of apoptosis protein 2 (iap2) as an antiviral strategy in transgenic silkworm. International Journal of Biological Macromolecules, 2021, 166, 529-537.	3.6	11
51	Transcriptome analysis reveals changes in silkworm energy metabolism during Nosema bombycis infection. Pesticide Biochemistry and Physiology, 2021, 174, 104809.	1.6	11
52	Screening and optimization of an efficient Bombyx mori nucleopolyhedrovirus inducible promoter. Journal of Biotechnology, 2016, 231, 72-80.	1.9	10
53	The beta-1, 4-N-acetylglucosaminidase $1\hat{A}$ gene, selected by domestication and breeding, is involved in cocoon construction of Bombyx mori. PLoS Genetics, 2020, 16, e1008907.	1.5	10
54	The Hox gene <i>Antennapedia</i> is essential for wing development in insects. Development (Cambridge), 2022, 149, .	1,2	10

#	Article	IF	CITATIONS
55	BmDredd is an initiator caspase and participates in Emodin-induced apoptosis in the silkworm, Bombyx mori. Gene, 2016, 591, 362-368.	1.0	9
56	InÂvivo RNA interference of BmNHR96 enhances the resistance of transgenic silkworm to BmNPV. Biochemical and Biophysical Research Communications, 2017, 493, 332-339.	1.0	9
57	Comparative genome-wide DNA methylation analysis reveals epigenomic differences in response to heat-humidity stress in Bombyx mori. International Journal of Biological Macromolecules, 2020, 164, 3771-3779.	3.6	9
58	Characteristics of the Peritrophic Matrix of the Silkworm, Bombyx mori and Factors Influencing Its Formation. Insects, 2021, 12, 516.	1.0	9
59	A novel laminin \hat{I}^2 gene BmLanB1-w regulates wing-specific cell adhesion in silkworm, Bombyx mori. Scientific Reports, 2015, 5, 12562.	1.6	8
60	Transgenic RNAi of BmREEPa in silkworms can enhance the resistance of silkworm to Bombyxmori Nucleopolyhedrovirus. Biochemical and Biophysical Research Communications, 2017, 483, 855-859.	1.0	8
61	Identification of Peritrophins and Antiviral Effect of Bm01504 against BmNPV in the Silkworm, Bombyx mori. International Journal of Molecular Sciences, 2020, 21, 7973.	1.8	8
62	iMITEdb: the genome-wide landscape of miniature inverted-repeat transposable elements in insects. Database: the Journal of Biological Databases and Curation, 2016, 2016, baw148.	1.4	8
63	Variation of lifespan in multiple strains, and effects of dietary restriction and <i>BmFoxO</i> on lifespan in silkworm, <i>Bombyx mori</i> Oncotarget, 2017, 8, 7294-7300.	0.8	8
64	Two <i>Geminin</i> homologs regulate DNA replication in silkworm, <i>Bombyx mori</i> . Cell Cycle, 2017, 16, 830-840.	1.3	7
65	Disruption of PTPS Gene Causing Pale Body Color and Lethal Phenotype in the Silkworm, Bombyx mori. International Journal of Molecular Sciences, 2018, 19, 1024.	1.8	7
66	Resistant silkworm strain block viral infection independent of melanization. Pesticide Biochemistry and Physiology, 2019, 154, 88-96.	1.6	7
67	Hippo pathway regulates somatic development and cell proliferation of silkworm. Genomics, 2019, 111, 391-397.	1.3	7
68	Excess melanin precursors rescue defective cuticular traits in stony mutant silkworms probably by upregulating four genes encoding RR1-type larval cuticular proteins. Insect Biochemistry and Molecular Biology, 2020, 119, 103315.	1.2	7
69	Taxonomic note of Oberea fuscipennis (Chevrolat, 1852) based on morphological and DNA barcode data (Coleoptera, Cerambycidae, Lamiinae). Zootaxa, 2016, 4136, 360-72.	0.2	6
70	Bombyx mori protein BmREEPa and BmPtchd could form a complex with BmNPV envelope protein GP64. Biochemical and Biophysical Research Communications, 2017, 490, 1254-1259.	1.0	6
71	Characterization of the novel role of NinaB orthologs from Bombyx mori and Tribolium castaneum. Insect Biochemistry and Molecular Biology, 2019, 109, 106-115.	1.2	6
72	Silver nanoparticles are effective in controlling microsporidia. Materials Science and Engineering C, 2021, 125, 112106.	3.8	6

#	Article	IF	Citations
73	Fine Mapping of a Degenerated Abdominal Legs Mutant (Edl) in Silkworm, Bombyx mori. PLoS ONE, 2017, 12, e0169224.	1.1	6
74	Baculovirus LEF-11 nuclear localization signal is important for viral DNA replication. Virus Research, 2017, 238, 133-140.	1.1	5
75	Genetic bioengineering of overexpressed guanylate binding protein family BmAtlastin-n enhances silkworm resistance to Nosema bombycis. International Journal of Biological Macromolecules, 2021, 172, 223-230.	3.6	5
76	A Matrix Metalloproteinase Mediates Tracheal Development in Bombyx mori. International Journal of Molecular Sciences, 2021, 22, 5618.	1.8	5
77	The dual roles of three MMPs and TIMP in innate immunity and metamorphosis in the silkworm, <i>Bombyx mori</i> . FEBS Journal, 2022, 289, 2828-2846.	2.2	5
78	Molecular mapping and characterization of the silkworm apodal mutant. Scientific Reports, 2016, 6, 18956.	1.6	4
79	Construction and characterization of a synthetic Baculovirus-inducible 39K promoter. Journal of Biological Engineering, 2018, 12, 30.	2.0	4
80	<i>BmGeminin2</i> interacts with <i>BmRRS1</i> and regulates <i>Bombyx mori</i> cell proliferation. Cell Cycle, 2019, 18, 1498-1512.	1.3	4
81	MicroRNA-6498-5p Inhibits Nosema bombycis Proliferation by Downregulating BmPLPP2 in Bombyx mori. Journal of Fungi (Basel, Switzerland), 2021, 7, 1051.	1.5	4
82	Expression pattern and tissue localization of the class B scavenger receptor <i>BmSCRBQ4</i> in <i>Bombyx mori</i> lnsect Science, 2015, 22, 739-747.	1.5	3
83	Comparative Analysis of Transcriptomes among Bombyx mori Strains and Sexes Reveals the Genes Regulating Melanic Morph and the Related Phenotypes. PLoS ONE, 2016, 11, e0155061.	1.1	3
84	Comparative Analysis of the Integument Transcriptomes between stick Mutant and Wild-Type Silkworms. International Journal of Molecular Sciences, 2018, 19, 3158.	1.8	3
85	Genome-wide identification and characterization of myosin genes in the silkworm, Bombyx mori. Gene, 2019, 691, 45-55.	1.0	3
86	BmFoxO Gene Regulation of the Cell Cycle Induced by 20-Hydroxyecdysone in BmN-SWU1 Cells. Insects, 2020, 11, 700.	1.0	3
87	DIA-based proteome reveals the involvement of cuticular proteins and lipids in the wing structure construction in the silkworm. Journal of Proteomics, 2021, 238, 104155.	1.2	3
88	Geminin is essential for DNA re-replication in the silk gland cells of silkworms. Experimental Cell Research, 2022, 410, 112951.	1.2	3
89	Bombyx mori Nucleopolyhedrovirus (BmNPV) Induces G2/M Arrest to Promote Viral Multiplication by Depleting BmCDK1. Insects, 2021, 12, 1098.	1.0	3
90	Molecular basis of the silkworm mutant <i>re</i> causing red egg color and embryonic death. Insect Science, 2021, 28, 1290-1299.	1.5	2

#	Article	IF	CITATIONS
91	Bombyx mori cell division cycle protein 37 promotes the proliferation of BmNPV. Pesticide Biochemistry and Physiology, 2021, 178, 104923.	1.6	2
92	E2F4 regulates the cell cycle and DNA replication in the silkworm, Bombyx mori. Insect Science, 2021, , .	1.5	2
93	Stable transformation of fluorescent proteins into Nosema bombycis by electroporation. Parasites and Vectors, 2022, 15, 141.	1.0	2
94	Sample Preparation to Observe The Straight And Flat Posture of Silkworm Embryo under Scanning Electron Microscopy via Glycerol Substitution Method. Microscopy and Microanalysis, 2014, 20, 964-967.	0.2	1
95	The <i>extramacrochaetae</i> gene is required for blastokinesis in silkworm, <i>Bombyx mori</i> Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2015, 324, 405-409.	0.6	1
96	Effects of P27/Bmdacapo, in the CIP/KIP family, on cell proliferation, growth and development in the silkworm (Bombyx mori). Gene, 2019, 700, 31-37.	1.0	1
97	Construction of a CRISPR/FnCas12a multi-sites editing system for inhibiting proliferation of Bombyx mori nuclearpolyhedrosisvirus. International Journal of Biological Macromolecules, 2021, 193, 585-591.	3.6	1
98	CRISPR/Cpf1 multiplex genome editing system increases silkworm tolerance to BmNPV. International Journal of Biological Macromolecules, 2022, 200, 566-573.	3.6	1
99	The complete mitochondrial genome of Yao silkworm (Bombyx mori). Mitochondrial DNA Part B: Resources, 2019, 4, 2811-2812.	0.2	0
100	Identification and effect of Zf-AD-containing C2H2 zinc finger genes on BmNPV replication in the silkworm (Bombyx mori). Pesticide Biochemistry and Physiology, 2020, 170, 104678.	1.6	0
101	A novel system to rapidly detect protein–protein interactions (PPIs) based on fluorescence co-localization. Biotechnology Letters, 2020, 42, 2111-2122.	1.1	0
102	Bmelo12, an elongase of very long-chain fatty acids gene, regulates silk yield in Bombyx mori. Journal of Genetics and Genomics, 2022, , .	1.7	0