
Yin-Cheong Wong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6500063/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Kinetics for Drug Discovery: an industry-driven effort to target drug residence time. Drug Discovery Today, 2017, 22, 896-911.	6.4	165
2	Development, characterization and application of in situ gel systems for intranasal delivery of tacrine. International Journal of Pharmaceutics, 2014, 468, 272-282.	5.2	94
3	Predicting Drug Concentrationâ€Time Profiles in Multiple CNS Compartments Using a Comprehensive Physiologicallyâ€Based Pharmacokinetic Model. CPT: Pharmacometrics and Systems Pharmacology, 2017, 6, 765-777.	2.5	61
4	A Generic Multi-Compartmental CNS Distribution Model Structure for 9 Drugs Allows Prediction of Human Brain Target Site Concentrations. Pharmaceutical Research, 2017, 34, 333-351.	3.5	59
5	Prediction of human CNS pharmacokinetics using a physiologically-based pharmacokinetic modeling approach. European Journal of Pharmaceutical Sciences, 2018, 112, 168-179.	4.0	59
6	Development of a SPE-LC/MS/MS method for simultaneous quantification of baicalein, wogonin, oroxylin A and their glucuronides baicalin, wogonoside and oroxyloside in rats and its application to brain uptake and plasma pharmacokinetic studies. Journal of Pharmaceutical and Biomedical Analysis, 2014, 97, 9-23.	2.8	57
7	Intranasal Delivery—Modification of Drug Metabolism and Brain Disposition. Pharmaceutical Research, 2010, 27, 1208-1223.	3.5	42
8	Novel CNS drug discovery and development approach: model-based integration to predict neuro-pharmacokinetics and pharmacodynamics. Expert Opinion on Drug Discovery, 2017, 12, 1207-1218.	5.0	35
9	Structure–activity relationships of the glucuronidation of flavonoids by human glucuronosyltransferases. Expert Opinion on Drug Metabolism and Toxicology, 2009, 5, 1399-1419.	3.3	33
10	Herb–drug interactions between Scutellariae Radix and mefenamic acid: Simultaneous investigation of pharmacokinetics, anti-inflammatory effect and gastric damage in rats. Journal of Ethnopharmacology, 2015, 170, 106-116.	4.1	32
11	Mechanistic models enable the rational use of <i>in vitro</i> drug-target binding kinetics for better drug effects in patients. Expert Opinion on Drug Discovery, 2016, 11, 45-63.	5.0	27
12	Investigation of the disposition of loxapine, amoxapine and their hydroxylated metabolites in different brain regions, CSF and plasma of rat by LC–MS/MS. Journal of Pharmaceutical and Biomedical Analysis, 2012, 58, 83-93.	2.8	25
13	Brain Uptake of Bioactive Flavones in Scutellariae Radix and Its Relationship to Anxiolytic Effect in Mice. Molecular Pharmaceutics, 2017, 14, 2908-2916.	4.6	25
14	Intestinal first-pass glucuronidation activities of selected dihydroxyflavones. International Journal of Pharmaceutics, 2009, 366, 14-20.	5.2	24
15	Brain Disposition and Catalepsy After Intranasal Delivery of Loxapine: Role of Metabolism in PK/PD of Intranasal CNS Drugs. Pharmaceutical Research, 2013, 30, 2368-2384.	3.5	22
16	Intranasal delivery of a novel acetylcholinesterase inhibitor HLS-3 for treatment of Alzheimer's disease. Life Sciences, 2018, 207, 428-435.	4.3	18
17	Regioselective biotransformation of CNS drugs and its clinical impact on adverse drug reactions. Expert Opinion on Drug Metabolism and Toxicology, 2012, 8, 833-854.	3.3	12
18	Alterations in the CNS effects of anti-epileptic drugs by Chinese herbal medicines. Expert Opinion on Drug Metabolism and Toxicology, 2014, 10, 249-267.	3.3	12

#	Article	IF	CITATIONS
19	Utility of Animal Models to Understand Human Alzheimer's Disease, Using the Mastermind Research Approach to Avoid Unnecessary Further Sacrifices of Animals. International Journal of Molecular Sciences, 2020, 21, 3158.	4.1	12
20	Revealing the Neuroendocrine Response After Remoxipride Treatment Using Multi-Biomarker Discovery and Quantifying It by PK/PD Modeling. AAPS Journal, 2017, 19, 274-285.	4.4	10
21	Pharmacokinetic Comparison Between the Long-Term Anesthetized, Short-Term Anesthetized and Conscious Rat Models in Nasal Drug Delivery. Pharmaceutical Research, 2014, 31, 2107-2123.	3.5	9
22	Physiologically Based Modeling Approach to Predict Dopamine D2 Receptor Occupancy of Antipsychotics in Brain: Translation From Rat to Human. Journal of Clinical Pharmacology, 2019, 59, 731-747.	2.0	9
23	Fingerprints of <scp>CNS</scp> drug effects: a plasma neuroendocrine reflection of <scp>D</scp> ₂ receptor activation using multiâ€biomarker pharmacokinetic/pharmacodynamic modelling. British Journal of Pharmacology, 2018, 175, 3832-3843.	5.4	7
24	Development of a population pharmacokinetic model to predict brain distribution and dopamine D2 receptor occupancy of raclopride in non-anesthetized rat. European Journal of Pharmaceutical Sciences, 2018, 111, 514-525.	4.0	6
25	Identification and disposition of novel monoâ€hydroxyl mefenamic acid and their potentially toxic 1â€Oâ€acylâ€glucuronides <i>in vivo</i> . Biopharmaceutics and Drug Disposition, 2015, 36, 529-551.	1.9	2
26	Comment on Uridine Diphosphate Glucuronosyltransferase Isoform-Dependent Regiospecificity of Glucuronidation of Flavonoids: Applicability of UV Spectrum Shifts in Identification of Glucuronidation Position in Flavones and Flavonols. Journal of Agricultural and Food Chemistry, 2012, 60, 4416-4419.	5.2	1