Majid Mirzaee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6499730/publications.pdf

Version: 2024-02-01

840776 839539 19 323 11 18 citations h-index g-index papers 19 19 19 443 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Amino-silane co-functionalized h-BN nanofibers with anti-corrosive function for epoxy coating. Reactive and Functional Polymers, 2022, 174, 105244.	4.1	8
2	A simple, low cost, and template-free method for synthesis of boron nitride using different precursors. Ceramics International, 2021, 47, 5977-5984.	4.8	12
3	Recent advances and future perspectives for carbon nanostructures reinforced organic coating for anti-corrosion application. Surfaces and Interfaces, 2021, 23, 100994.	3.0	22
4	Solid-state synthesis and characterization of two-dimensional hexagonal BCN nanosheet using a free template method. Diamond and Related Materials, 2021, 115, 108350.	3.9	16
5	Corrosion properties of organic polymer coating reinforced two-dimensional nitride nanostructures: a comprehensive review. Journal of Polymer Research, 2021, 28, 1.	2.4	19
6	Flower-like mesoporous nano NiCo2O4 -decorated ERGO/Ni-NiO foam as electrode materials for supercapacitor. Materials Research Bulletin, 2019, 109, 10-20.	5.2	11
7	Synthesis of nanoporous copper foam-applied current collector electrode for supercapacitor. Journal of the Iranian Chemical Society, 2019, 16, 283-292.	2.2	18
8	One-step electrodeposition of reduced graphene oxide on three-dimensional porous nano nickel-copper foam electrode and its use in supercapacitor. Journal of Electroanalytical Chemistry, 2018, 813, 152-162.	3.8	32
9	ERGO grown on Ni-Cu foam frameworks by constant potential method as high performance electrodes for supercapacitors. Applied Surface Science, 2018, 436, 1050-1060.	6.1	17
10	Synthesis of flower-like NiCo2O4 via chronopotentiometric technique and its application as electrode materials for high-performance supercapacitors. Materials Today Energy, 2018, 10, 68-80.	4.7	6
11	Pulsed electrodeposition of reduced graphene oxide on Ni NiO foam electrode for high-performance supercapacitor. International Journal of Hydrogen Energy, 2018, 43, 12233-12250.	7.1	18
12	Facile synthesis of nano dendrite-structured Ni–NiO foam/ERGO by constant current method for supercapacitor applications. Journal of Applied Electrochemistry, 2018, 48, 923-935.	2.9	12
13	Preparation of dendritic nanoporous Ni-NiO foam by electrochemical dealloying for use in high-performance supercapacitors. Journal of Solid State Electrochemistry, 2018, 22, 3639-3645.	2.5	6
14	NANOSTRUCTURED Ni-Cu FOAM ELECTRODEPOSITED ON A COPPER SUBSTRATE APPLIED AS SUPERCAPACITOR ELECTRODE. Acta Metallurgica Slovaca, 2018, 24, 325-336.	0.7	5
15	Synthesis and characterization of silver doped hydroxyapatite nanocomposite coatings and evaluation of their antibacterial and corrosion resistance properties in simulated body fluid. Materials Science and Engineering C, 2016, 69, 675-684.	7.3	94
16	Effects of tin valence on microstructure, optical, and electrical properties of ITO thin films prepared by sol–gel method. Journal of Sol-Gel Science and Technology, 2015, 75, 582-592.	2.4	18
17	Effect of Cr doping on the structural, morphological, optical and electrical properties of indium tin oxide films. Applied Physics A: Materials Science and Processing, 2015, 118, 953-960.	2.3	5
18	Effect of content silver and heat treatment temperature on morphological, optical, and electrical properties of ITO films by sol–gel technique. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	4

#	Article	IF	CITATIONS
19	Surface modification of acrylic coating with antiâ€corrosion and <scp>antiâ€UV</scp> materials. Journal of the Chinese Chemical Society, 0, , .	1.4	O