
Payam Shafigh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6499632/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermal conductivity of concrete – A review. Journal of Building Engineering, 2018, 20, 81-93.	1.6	403
2	Supplementary cementitious materials origin from agricultural wastes – A review. Construction and Building Materials, 2015, 74, 176-187.	3.2	361
3	Using waste plastic bottles as additive for stone mastic asphalt. Materials & Design, 2011, 32, 4844-4849.	5.1	251
4	Lightweight aggregate concrete fiber reinforcement – A review. Construction and Building Materials, 2012, 37, 452-461.	3.2	213
5	Agricultural wastes as aggregate in concrete mixtures – A review. Construction and Building Materials, 2014, 53, 110-117.	3.2	186
6	Oil palm shell as a lightweight aggregate for production high strength lightweight concrete. Construction and Building Materials, 2011, 25, 1848-1853.	3.2	160
7	Lightweight concrete made from crushed oil palm shell: Tensile strength and effect of initial curing on compressive strength. Construction and Building Materials, 2012, 27, 252-258.	3.2	118
8	Strengthening of RC beams using prestressed fiber reinforced polymers – A review. Construction and Building Materials, 2015, 82, 235-256.	3.2	118
9	Structural lightweight aggregate concrete using two types of waste from the palm oil industry as aggregate. Journal of Cleaner Production, 2014, 80, 187-196.	4.6	109
10	A new method of producing high strength oil palm shell lightweight concrete. Materials & Design, 2011, 32, 4839-4843.	5.1	107
11	Oil-palm by-products as lightweight aggregate in concrete mixture: a review. Journal of Cleaner Production, 2016, 126, 56-73.	4.6	107
12	Effect of steel fiber on the mechanical properties of oil palm shell lightweight concrete. Materials & Design, 2011, 32, 3926-3932.	5.1	106
13	Engineering properties of lightweight aggregate concrete containing limestone powder and high volume fly ash. Journal of Cleaner Production, 2016, 135, 148-157.	4.6	106
14	The role of 0–2mm fine recycled concrete aggregate on the compressive and splitting tensile strengths of recycled concrete aggregate concrete. Materials & Design, 2014, 64, 345-354.	5.1	103
15	Utilization of high-volume treated palm oil fuel ash to produce sustainable self-compacting concrete. Journal of Cleaner Production, 2016, 137, 982-996.	4.6	102
16	Engineering properties of oil palm shell lightweight concrete containing fly ash. Materials & Design, 2013, 49, 613-621.	5.1	98
17	Concrete as a thermal mass material for building applications - A review. Journal of Building Engineering, 2018, 19, 14-25.	1.6	95
18	Oil palm shell lightweight concrete containing high volume ground granulated blast furnace slag. Construction and Building Materials, 2013, 40, 231-238.	3.2	85

#	Article	IF	CITATIONS
19	Benefits of using blended waste coarse lightweight aggregates in structural lightweight aggregate concrete. Journal of Cleaner Production, 2016, 119, 108-117.	4.6	77
20	Manufacturing of high-strength lightweight aggregate concrete using blended coarse lightweight aggregates. Journal of Building Engineering, 2017, 13, 53-62.	1.6	73
21	Properties of eco-friendly self-compacting concrete containing modified treated palm oil fuel ash. Construction and Building Materials, 2018, 158, 742-754.	3.2	66
22	A comparison study of the mechanical properties and drying shrinkage of oil palm shell and expanded clay lightweight aggregate concretes. Materials & Design, 2014, 60, 320-327.	5.1	57
23	A comparison study of the fresh and hardened properties of normal weight and lightweight aggregate concretes. Journal of Building Engineering, 2018, 15, 252-260.	1.6	57
24	Engineering properties of lightweight aggregate concrete containing binary and ternary blended cement. Journal of Cleaner Production, 2017, 149, 976-988.	4.6	52
25	Oil palm shell lightweight concrete as a ductile material. Materials & Design, 2012, 36, 650-654.	5.1	51
26	Development of Self-Consolidating High Strength Concrete Incorporating Treated Palm Oil Fuel Ash. Materials, 2015, 8, 2154-2173.	1.3	48
27	Introducing an effective curing method for mortar containing high volume cementitious materials. Construction and Building Materials, 2016, 107, 365-377.	3.2	48
28	Drying shrinkage behaviour of structural lightweight aggregate concrete containing blended oil palm bio-products. Journal of Cleaner Production, 2016, 127, 183-194.	4.6	46
29	Research progress on the flexural behaviour of externally bonded RC beams. Archives of Civil and Mechanical Engineering, 2016, 16, 982-1003.	1.9	46
30	The effect of coarse to fine aggregate ratio on the fresh and hardened properties of roller-compacted concrete pavement. Construction and Building Materials, 2018, 169, 553-566.	3.2	46
31	High-Strength Lightweight Concrete Using Leca, Silica Fume, and Limestone. Arabian Journal for Science and Engineering, 2012, 37, 1885-1893.	1.1	44
32	The use of wire mesh–epoxy composite for enhancing the flexural performance of concrete beams. Materials & Design, 2014, 60, 250-259.	5.1	43
33	Flexural behaviour of RC beams strengthened with wire mesh-epoxy composite. Construction and Building Materials, 2015, 79, 104-114.	3.2	42
34	A review on indoor environmental quality (IEQ) and energy consumption in building based on occupant behavior. Facilities, 2017, 35, 684-695.	0.8	42
35	Relationships between compressive strength of cement–slag mortars under air and water curing regimes. Construction and Building Materials, 2012, 31, 188-196.	3.2	38
36	Palm Oil Fuel Ash as a Partial Cement Replacement for Producing Durable Self-consolidating High-Strength Concrete. Arabian Journal for Science and Engineering, 2014, 39, 8507-8516.	1.1	38

#	Article	IF	CITATIONS
37	Thermal properties of cement mortar with different mix proportions. Materiales De Construccion, 2020, 70, 224.	0.2	37
38	Mechanical Properties of Structural Lightweight Aggregate Concrete Containing Low Volume Steel Fiber. Arabian Journal for Science and Engineering, 2014, 39, 3579-3590.	1.1	35
39	Pitch spacing effect on the axial compressive behaviour of spirally reinforced concrete-filled steel tube (SRCFT). Thin-Walled Structures, 2016, 100, 213-223.	2.7	34
40	Effects of polypropylene twisted bundle fibers on the mechanical properties of high-strength oil palm shell lightweight concrete. Materials and Structures/Materiaux Et Constructions, 2016, 49, 1221-1233.	1.3	31
41	Heat-treated palm oil fuel ash as an effective supplementary cementitious material originating from agriculture waste. Construction and Building Materials, 2018, 167, 44-54.	3.2	31
42	Optimum moisture content in roller-compacted concrete pavement. International Journal of Pavement Engineering, 2020, 21, 1769-1779.	2.2	29
43	Optimum Oil Palm Shell Content as Coarse Aggregate in Concrete Based on Mechanical and Durability Properties. Advances in Materials Science and Engineering, 2018, 2018, 1-14.	1.0	27
44	Performance of High Strength Concrete Subjected to Elevated Temperatures: A Review. Fire Technology, 2019, 55, 1571-1597.	1.5	25
45	Behavior of Channel Shear Connectors in Normal and Light Weight Aggregate Concrete (Experimental) Tj ETQq1	1 0.78431 0.3	.4 _{.2} gBT /Ove
46	Effect of Replacement of Normal Weight Coarse Aggregate with Oil Palm Shell on Properties of Concrete. Arabian Journal for Science and Engineering, 2012, 37, 955-964.	1.1	21
47	A new sustainable composite column using an agricultural solid waste as aggregate. Journal of Cleaner Production, 2016, 129, 282-291.	4.6	20
48	Thermophysical properties of sustainable cement mortar containing oil palm boiler clinker (OPBC) as a fine aggregate. Construction and Building Materials, 2021, 268, 121091.	3.2	20
49	Production of A Green Lightweight Aggregate Concrete by Incorporating High Volume Locally Available Waste Materials. Procedia Engineering, 2017, 184, 778-783.	1.2	18
50	High Strength Lightweight Aggregate Concrete using Blended Coarse Lightweight Aggregate Origin from Palm Oil Industry. Sains Malaysiana, 2017, 46, 667-675.	0.3	18
51	Oil palm shell as an agricultural solid waste in artificial lightweight aggregate concrete. European Journal of Environmental and Civil Engineering, 2018, 22, 165-180.	1.0	17
52	Appropriate drying shrinkage prediction models for lightweight concrete containing coarse aggregate. Journal of Building Engineering, 2020, 29, 101148.	1.6	16
53	Structural Lightweight Aggregate Concrete by Incorporating Solid Wastes as Coarse Lightweight Aggregate. Applied Mechanics and Materials, 0, 749, 337-342.	0.2	15
54	Production of high-strength lightweight concrete using waste lightweight oil-palm-boiler-clinker and limestone powder. European Journal of Environmental and Civil Engineering, 2019, 23, 325-344.	1.0	15

#	Article	IF	CITATIONS
55	Crossover Effect in Cement-Based Materials: A Review. Applied Sciences (Switzerland), 2019, 9, 2776.	1.3	14
56	Quality control of lightweight aggregate concrete based on initial and final water absorption tests. IOP Conference Series: Materials Science and Engineering, 2017, 210, 012022.	0.3	13
57	Drying shrinkage properties of expanded polystyrene (EPS) lightweight aggregate concrete: A review. Case Studies in Construction Materials, 2022, 16, e00919.	0.8	13
58	Mechanical Properties of High Strength Concrete Containing Coal Bottom Ash and Oil-Palm Boiler Clinker as Fine Aggregates. MATEC Web of Conferences, 2016, 66, 00034.	0.1	12
59	pH Measurement of Cement-Based Materials: The Effect of Particle Size. Applied Sciences (Switzerland), 2021, 11, 8000.	1.3	12
60	Phase change materials incorporated into geopolymer concrete for enhancing energy efficiency and sustainability of buildings: A review. Case Studies in Construction Materials, 2022, 17, e01162.	0.8	11
61	The effect of superplasticizer admixture on the engineering characteristics of roller-compacted concrete pavement. International Journal of Pavement Engineering, 2022, 23, 2432-2447.	2.2	10
62	Effect of utilizing unground and ground normal and black rice husk ash on the mechanical and durability properties of high-strength concrete. Sadhana - Academy Proceedings in Engineering Sciences, 2018, 43, 1.	0.8	9
63	Experimental Study on the Flexural Behavior of over Reinforced Concrete Beams Bolted with Compression Steel Plate: Part I. Applied Sciences (Switzerland), 2020, 10, 822.	1.3	9
64	An experimental study on shear reinforcement in RC beams using CFRP-bars. Scientific Research and Essays, 2011, 6, 3447-3460.	0.1	8
65	The effect of using low fines content sand on the fresh and hardened properties of roller-compacted concrete pavement. Case Studies in Construction Materials, 2019, 11, e00230.	0.8	8
66	The effect of cement mortar composition on the pH value. IOP Conference Series: Materials Science and Engineering, 2020, 770, 012026.	0.3	8
67	Drying Shrinkage Strain of Palm-oil by-products Lightweight Concrete: A Comparison between Experimental and Prediction Models. KSCE Journal of Civil Engineering, 2018, 22, 4997-5008.	0.9	6
68	An Experimental and Numerical Study on the Flexural Performance of Over-Reinforced Concrete Beam Strengthening with Bolted-Compression Steel Plates: Part II. Applied Sciences (Switzerland), 2020, 10, 94.	1.3	6
69	Laboratory comparison of roller-compacted concrete and ordinary vibrated concrete for pavement structures. Gradevinar, 2020, 72, 127-137.	0.2	6
70	Effect of Substitution of Normal Weight Coarse Aggregate with Oil-Palm-Boiler Clinker on Properties of Concrete. Sains Malaysiana, 2017, 46, 645-653.	0.3	6
71	The Effect of Palm Oil Fuel Ash as a Cementreplacement Material on Self-Compacting Concrete. Applied Mechanics and Materials, 0, 567, 529-534.	0.2	5
72	Flexural Behaviour of Concrete Beams Bonded with Wire Mesh-Epoxy Composite. Applied Mechanics and Materials, 0, 567, 411-416.	0.2	5

#	Article	IF	CITATIONS
73	Energy Performance of a High-Rise Residential Building Using Fibre-Reinforced Structural Lightweight Aggregate Concrete. Applied Sciences (Switzerland), 2020, 10, 4489.	1.3	5
74	Comparative study of mechanical properties for substitution of normal weight coarse aggregate with oil-palm-boiler clinker and lightweight expanded clay aggregate concretes. Journal of Design and Built Environment, 2019, 19, 62-77.	0.4	5
75	Structural Lightweight Aggregate Concrete Containing High Volume Waste Materials. Key Engineering Materials, 0, 594-595, 498-502.	0.4	4
76	Toward Sustainability in Concrete Industry by Using Of Solid Wastes from Palm Oil Industry. MATEC Web of Conferences, 2016, 66, 00099.	0.1	4
77	Post-peak Behaviour of Composite Column Using a Ductile Lightweight Aggregate Concrete. International Journal of Concrete Structures and Materials, 2021, 15, .	1.4	4
78	The effect of coarse to fine aggregate ratio on drying shrinkage of roller compacted concrete pavement in different curing conditions. Materiales De Construccion, 2021, 71, e246.	0.2	4
79	Determination of optimum insulation and cement plaster thickness for bungalow buildings through a simulation-statistical approach using response surface methodology. Journal of Design and Built Environment, 2019, 19, 48-63.	0.4	4
80	Mechanical properties of high strength semi-lightweight aggregate concrete containing high volume waste materials. AIP Conference Proceedings, 2016, , .	0.3	3
81	Effect of replacement of oil-palm-boiler clinker with oil palm shell on the properties of concrete. AIP Conference Proceedings, 2016, , .	0.3	3
82	Mechanical and Durability Properties of High Strength High Performance Concrete Incorporating Rice Husk Ash. IOP Conference Series: Materials Science and Engineering, 2019, 536, 012028.	0.3	3
83	Experimental Analysis of Changes in Cement Mortar Containing Oil Palm Boiler Clinker Waste at Elevated Temperatures in Different Cooling Conditions. Crystals, 2021, 11, 988.	1.0	2
84	Recent Progress in the Application of Coconut and Palm Oil Fibres in Cement-Based Materials. Sustainability, 2021, 13, 12865.	1.6	2
85	The Importance of Superplastizer Dosage in the Mix Design of Lightweight Aggregate Concrete Reinforced With Plypropylene Fiber. MATEC Web of Conferences, 2016, 66, 00020.	0.1	1
86	The relation between indoor environnemental quality (IEQ) and energy consumption in building based on occupant behavior - A review. MATEC Web of Conferences, 2016, 66, 00086.	0.1	1
87	High Strength Concrete Incorporating Oil-Palm-Boiler Clinker as Coarse Lightweight Aggregate. IOP Conference Series: Materials Science and Engineering, 2019, 601, 012017.	0.3	1
88	Durability Property of Oil-Palm-Boiler Clinker Lightweight Concrete Based on Water Absorption Test. IOP Conference Series: Earth and Environmental Science, 2020, 476, 012016.	0.2	1
89	The effect of cement content on drying shrinkage of roller compacted concrete pavement. AIP Conference Proceedings, 2020, , .	0.3	0
90	Challenges of Using Agricultural Solid Wastes as Aggregate in Structural Concrete. , 0, , .		0

6

#	Article	IF	CITATIONS
91	Optimization of Mixture Proportions of High Strength High Performance Concrete Incorporating Rice Husk Ash by Using Response Surface Methodology. , 2019, , .		Ο
92	Evaluation of the optimum value of lightweight expanded clay aggregate incorporation into the roller-compacted concrete pavement through experimental measurement of mechanical and thermal properties. International Journal of Pavement Engineering, 2023, 24, .	2.2	0