
James Brugarolas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6499207/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improving Renal Tumor Biopsy Prognostication With BAP1 Analyses. Archives of Pathology and Laboratory Medicine, 2022, 146, 154-165.	2.5	7
2	Germline and sporadic mTOR pathway mutations in low-grade oncocytic tumor of the kidney. Modern Pathology, 2022, 35, 333-343.	5.5	34
3	Phase II Trial of Stereotactic Ablative Radiation for Oligoprogressive Metastatic Kidney Cancer. European Urology Oncology, 2022, 5, 216-224.	5.4	26
4	Chronic Use of Proton Pump Inhibitors Is Associated With an Increased Risk of Immune Checkpoint Inhibitor Colitis in Renal Cell Carcinoma. Clinical Genitourinary Cancer, 2022, 20, 260-269.	1.9	8
5	Stereotactic ablative radiation therapy for renal cell carcinoma with inferior vena cava tumor thrombus. Urologic Oncology: Seminars and Original Investigations, 2022, 40, 166.e9-166.e13.	1.6	17
6	Extended Disease Control with Unconventional Cabozantinib Dose Increase in Metastatic Renal Cell Carcinoma1. Kidney Cancer, 2022, 6, 69-79.	0.4	2
7	An interdisciplinary consensus on the management of brain metastases in patients with renal cell carcinoma. Ca-A Cancer Journal for Clinicians, 2022, 72, 454-489.	329.8	13
8	An oncogenic JMJD6-DGAT1 axis tunes the epigenetic regulation of lipid droplet formation in clear cell renal cell carcinoma. Molecular Cell, 2022, 82, 3030-3044.e8.	9.7	18
9	Facts and Hopes for Immunotherapy in Renal Cell Carcinoma. Clinical Cancer Research, 2022, 28, 5013-5020.	7.0	8
10	Magnetic Resonance Imaging Radiomics Analyses for Prediction of High-Grade Histology and Necrosis in Clear Cell Renal Cell Carcinoma: Preliminary Experience. Clinical Genitourinary Cancer, 2021, 19, 12-21.e1.	1.9	22
11	Summary from the Kidney Cancer Association's Inaugural Think Thank: Coalition for a Cure. Clinical Genitourinary Cancer, 2021, 19, 167-175.	1.9	4
12	Eosinophilic Vacuolated Tumor of the Kidney: A Review of Evolving Concepts in This Novel Subtype With Additional Insights From a Case With MTOR Mutation and Concomitant Chromosome 1 Loss. Advances in Anatomic Pathology, 2021, 28, 251-257.	4.3	26
13	Neoadjuvant SABR for Renal Cell Carcinoma Inferior Vena Cava Tumor Thrombus—Safety Lead-in Results of a Phase 2 Trial. International Journal of Radiation Oncology Biology Physics, 2021, 110, 1135-1142.	0.8	36
14	Deciphering Intratumoral Molecular Heterogeneity in Clear Cell Renal Cell Carcinoma with a Radiogenomics Platform. Clinical Cancer Research, 2021, 27, 4794-4806.	7.0	17
15	Stereotactic Ablative Radiation Therapy for Oligoprogressive Renal Cell Carcinoma. Advances in Radiation Oncology, 2021, 6, 100692.	1.2	18
16	Determinants of renal cell carcinoma invasion and metastatic competence. Nature Communications, 2021, 12, 5760.	12.8	25
17	Outcome and Immune Correlates of a Phase II Trial of High-Dose Interleukin-2 and Stereotactic Ablative Radiotherapy for Metastatic Renal Cell Carcinoma. Clinical Cancer Research, 2021, 27, 6716-6725.	7.0	12
18	Oncogenic KRAS Requires Complete Loss of BAP1 Function for Development of Murine Intrahepatic Cholangiocarcinoma. Cancers, 2021, 13, 5709.	3.7	3

#	Article	IF	CITATIONS
19	A renal cell carcinoma tumorgraft platform to advance precision medicine. Cell Reports, 2021, 37, 110055.	6.4	16
20	Molecular Genetic Determinants of Shorter Time on Active Surveillance in a Prospective Phase 2 Clinical Trial in Metastatic Renal Cell Carcinoma. European Urology, 2021, , .	1.9	9
21	HIF-2 Complex Dissociation, Target Inhibition, and Acquired Resistance with PT2385, a First-in-Class HIF-2 Inhibitor, in Patients with Clear Cell Renal Cell Carcinoma. Clinical Cancer Research, 2020, 26, 793-803.	7.0	117
22	Ontological analyses reveal clinically-significant clear cell renal cell carcinoma subtypes with convergent evolutionary trajectories into an aggressive type. EBioMedicine, 2020, 51, 102526.	6.1	33
23	The von Hippel-Lindau Tumor Suppressor Gene. Cancer Journal (Sudbury, Mass), 2020, 26, 390-398.	2.0	123
24	Biological Mechanisms and Clinical Significance of <i>BAP1</i> Mutations in Human Cancer. Cancer Discovery, 2020, 10, 1103-1120.	9.4	144
25	De novo prediction of cancer-associated T cell receptors for noninvasive cancer detection. Science Translational Medicine, 2020, 12, .	12.4	59
26	The Evolution of Angiogenic and Inflamed Tumors: The Renal Cancer Paradigm. Cancer Cell, 2020, 38, 771-773.	16.8	23
27	Complement as Prognostic Biomarker and Potential Therapeutic Target in Renal Cell Carcinoma. Journal of Immunology, 2020, 205, 3218-3229.	0.8	20
28	Acute interstitial nephritis, a potential predictor of response to immune checkpoint inhibitors in renal cell carcinoma. , 2020, 8, e001198.		24
29	Tumor neoantigenicity assessment with CSiN score incorporates clonality and immunogenicity to predict immunotherapy outcomes. Science Immunology, 2020, 5, .	11.9	39
30	Pancreatic tropism of metastatic renal cell carcinoma. JCI Insight, 2020, 5, .	5.0	55
31	Combination of dual immune checkpoint inhibition (ICI) with stereotactic radiation (SBRT) in metastatic renal cell carcinoma (mRCC) (RADVAX RCC) Journal of Clinical Oncology, 2020, 38, 614-614.	1.6	55
32	What morphology can teach us about renal cell carcinoma clonal evolution. Kidney Cancer Journal: Official Journal of the Kidney Cancer Association, 2020, 18, 68-76.	0.1	5
33	Familial Kidney Cancer: Implications of New Syndromes and Molecular Insights. European Urology, 2019, 76, 754-764.	1.9	80
34	Stereotactic Body Radiation Therapy for Renal Cell Carcinoma with Inferior Vena Cava Thrombus – Initial Experience Report and Literature Review. Kidney Cancer, 2019, 3, 71-77.	0.4	7
35	SCINA: Semi-Supervised Analysis of Single Cells in Silico. Genes, 2019, 10, 531.	2.4	150
36	Current Challenges in Diagnosis and Assessment of the Response of Locally Advanced and Metastatic Renal Cell Carcinoma. Radiographics, 2019, 39, 998-1016.	3.3	14

#	Article	IF	CITATIONS
37	Stereotactic Ablative Radiation Therapy (SAbR) Used to Defer Systemic Therapy in Oligometastatic Renal Cell Cancer. International Journal of Radiation Oncology Biology Physics, 2019, 105, 367-375.	0.8	65
38	Pathologic response and surgical outcomes in patients undergoing nephrectomy following receipt of immune checkpoint inhibitors for renal cell carcinoma. Urologic Oncology: Seminars and Original Investigations, 2019, 37, 924-931.	1.6	42
39	Inflammatory Reaction Secondary to Immune Checkpoint Inhibitor Therapy Mimicking a Post-Operative Brain Abscess. World Neurosurgery, 2019, 129, 354-358.	1.3	6
40	PD-L1 detection using 89Zr-atezolizumab immuno-PET in renal cell carcinoma tumorgrafts from a patient with favorable nivolumab response. , 2019, 7, 144.		53
41	Downregulation of Human DAB2IP Gene Expression in Renal Cell Carcinoma Results in Resistance to Ionizing Radiation. Clinical Cancer Research, 2019, 25, 4542-4551.	7.0	19
42	DEFOR: depth- and frequency-based somatic copy number alteration detector. Bioinformatics, 2019, 35, 3824-3825.	4.1	4
43	Improved Survival Outcomes for Kidney Cancer Patients With Brain Metastases. Clinical Genitourinary Cancer, 2019, 17, e263-e272.	1.9	19
44	Stereotactic Radiosurgery for Multiple Brain Metastases From Renal-Cell Carcinoma. Clinical Genitourinary Cancer, 2019, 17, e273-e280.	1.9	25
45	Safety and feasibility of nephrectomy after receipt of immune checkpoint inhibitors for renal cell carcinoma Journal of Clinical Oncology, 2019, 37, 619-619.	1.6	5
46	Comprehensive molecular and genomic characterization of pancreatic tropism in metastatic renal cell carcinoma Journal of Clinical Oncology, 2019, 37, 633-633.	1.6	1
47	Immune-related adverse events are associated with improved outcomes in ICI-treated renal cell carcinoma patients Journal of Clinical Oncology, 2019, 37, 645-645.	1.6	36
48	Phase Ib: Preliminary clinical activity and immune activation for NKTR-262 [TLR 7/8 agonist] plus NKTR-214 [CD122-biased agonist] in patients (pts) with locally advanced or metastatic solid tumors (REVEAL Phase Ib/II Trial) Journal of Clinical Oncology, 2019, 37, 26-26.	1.6	17
49	Assessment of intratumor heterogeneity using imaging texture features in clear cell renal cell carcinoma Journal of Clinical Oncology, 2019, 37, 663-663.	1.6	0
50	Leveraging a robust patient-derived xenograft platform to characterize predictors for engraftment and oncologic outcomes in renal cell carcinoma patients Journal of Clinical Oncology, 2019, 37, 651-651.	1.6	0
51	Outcomes of stereotactic ablative radiotherapy for extra-cranial oligo-metastatic renal cell cancer Journal of Clinical Oncology, 2019, 37, 599-599.	1.6	0
52	The role of architectural patterns and cytologic features in the prognosis of clear cell renal cell carcinoma Journal of Clinical Oncology, 2019, 37, 632-632.	1.6	0
53	Next Generation Sequencing in Renal Cell Carcinoma: Towards Precision Medicine. Kidney Cancer Journal: Official Journal of the Kidney Cancer Association, 2019, 17, 94-104.	0.1	0
54	Wholeâ€body MRI for metastatic cancer detection using T ₂ â€weighted imaging with fat and fluid suppression. Magnetic Resonance in Medicine, 2018, 80, 1402-1415.	3.0	8

#	Article	IF	CITATIONS
55	Safety and efficacy of concurrent immune checkpoint inhibitors and hypofractionated body radiotherapy. Oncolmmunology, 2018, 7, e1440168.	4.6	31
56	Statistical clustering of parametric maps from dynamic contrast enhanced MRI and an associated decision tree model for non-invasive tumour grading of T1b solid clear cell renal cell carcinoma. European Radiology, 2018, 28, 124-132.	4.5	8
57	Development of a Patient-specific Tumor Mold Using Magnetic Resonance Imaging and 3-Dimensional Printing Technology for Targeted Tissue Procurement and Radiomics Analysis of Renal Masses. Urology, 2018, 112, 209-214.	1.0	32
58	Phase I Dose-Escalation Trial of PT2385, a First-in-Class Hypoxia-Inducible Factor-2α Antagonist in Patients With Previously Treated Advanced Clear Cell Renal Cell Carcinoma. Journal of Clinical Oncology, 2018, 36, 867-874.	1.6	290
59	Personalized Management of Advanced Kidney Cancer. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2018, 38, 330-341.	3.8	25
60	Consensus report of the 8 and 9th Weinman Symposia on Gene x Environment Interaction in carcinogenesis: novel opportunities for precision medicine. Cell Death and Differentiation, 2018, 25, 1885-1904.	11.2	31
61	Incidence and Outcomes of Delayed Targeted Therapy After Cytoreductive Nephrectomy for Metastatic Renal-Cell Carcinoma: A Nationwide Cancer Registry Study. Clinical Genitourinary Cancer, 2018, 16, e1221-e1235.	1.9	14
62	The complex relationship between <scp>TFEB</scp> transcription factor phosphorylation and subcellular localization. EMBO Journal, 2018, 37, .	7.8	332
63	What is the role of nephrectomy following complete response to checkpoint inhibitors?. Urology Case Reports, 2018, 18, 60-63.	0.3	20
64	Renal Cell Carcinoma Pseudoprogression with Clinical Deterioration: To Hospice and Back. Clinical Genitourinary Cancer, 2018, 16, 485-488.	1.9	9
65	Perspectives in immunotherapy: meeting report from the Immunotherapy Bridge (29-30 November, 2017,) Tj ET	Qq1 1 0.7	'84314 rgBT /(
66	Fourth-Line Therapy in Metastatic Renal Cell Carcinoma (mRCC): Results from the International mRCC Database Consortium (IMDC)1. Kidney Cancer, 2018, 2, 31-36.	0.4	10
67	An Empirical Approach Leveraging Tumorgrafts to Dissect the Tumor Microenvironment in Renal Cell Carcinoma Identifies Missing Link to Prognostic Inflammatory Factors. Cancer Discovery, 2018, 8, 1142-1155.	9.4	138
68	Utilization and survival implications of a delayed approach to targeted therapy for metastatic renal cell carcinoma: A nationwide cancer registry study Journal of Clinical Oncology, 2018, 36, 586-586.	1.6	1
69	Improved survival rates in kidney cancer patients with brain metastases treated with modern multidisciplinary approaches Journal of Clinical Oncology, 2018, 36, 601-601.	1.6	О
70	Impact of tumor size on survival outcome in metastatic renal cell carcinoma patients (mRCC) treated with targeted therapy Journal of Clinical Oncology, 2018, 36, 667-667.	1.6	0
71	Discontinuing VEGF-targeted Therapy for Progression Versus Toxicity Affects Outcomes of Second-line Therapies in Metastatic Renal CellÂCarcinoma. Clinical Genitourinary Cancer, 2017, 15, 403-410.e2.	1.9	14
72	Renal Cell Carcinoma With Pulmonary Metastasis and Metachronous Non-Small Cell Lung Cancer. Clinical Genitourinary Cancer, 2017, 15, e675-e680.	1.9	5

#	Article	IF	CITATIONS
73	Safety and Efficacy of Stereotactic Ablative Radiation Therapy for Renal Cell Carcinoma Extracranial Metastases. International Journal of Radiation Oncology Biology Physics, 2017, 98, 91-100.	0.8	67
74	Hypoxia-inducible factor 1α activates insulin-induced gene 2 (Insig-2) transcription for degradation of 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase in the liver. Journal of Biological Chemistry, 2017, 292, 9382-9393.	3.4	80
75	Modeling Renal Cell Carcinoma in Mice: <i>Bap1</i> and <i>Pbrm1</i> Inactivation Drive Tumor Grade. Cancer Discovery, 2017, 7, 900-917.	9.4	128
76	Multistep regulation of TFEB by MTORC1. Autophagy, 2017, 13, 464-472.	9.1	162
77	BAP1 and PBRM1 in metastatic clear cell renal cell carcinoma: tumor heterogeneity and concordance with paired primary tumor. BMC Urology, 2017, 17, 19.	1.4	26
78	Multicenter Validation of Enhancer of Zeste Homolog 2 Expression as an Independent Prognostic Marker in Localized Clear Cell Renal Cell Carcinoma. Journal of Clinical Oncology, 2017, 35, 3706-3713.	1.6	34
79	Hepatic mTORC1 Opposes Impaired Insulin Action to Control Mitochondrial Metabolism in Obesity. Cell Reports, 2016, 16, 508-519.	6.4	34
80	Multi-disciplinary surgical approach to the management of patients with renal cell carcinoma with venous tumor thrombus: 15Ayear experience and lessons learned. BMC Urology, 2016, 16, 43.	1.4	24
81	Targeting renal cell carcinoma with a HIF-2 antagonist. Nature, 2016, 539, 112-117.	27.8	521
82	Fibroblast Growth Factor Receptor-Dependent and -Independent Paracrine Signaling by Sunitinib-Resistant Renal Cell Carcinoma. Molecular and Cellular Biology, 2016, 36, 1836-1855.	2.3	33
83	Predictive Biomarkers for Molecularly Targeted Therapies in Renal Cell Carcinoma. Journal of the National Comprehensive Cancer Network: JNCCN, 2016, 14, 925-927.	4.9	3
84	Intratumor Heterogeneity of Perfusion and Diffusion in Clear-Cell Renal Cell Carcinoma: Correlation With Tumor Cellularity. Clinical Genitourinary Cancer, 2016, 14, e585-e594.	1.9	31
85	Loss of histone H3 lysine 36 trimethylation is associated with an increased risk of renal cell carcinoma-specific death. Modern Pathology, 2016, 29, 34-42.	5.5	55
86	Tumor Vascularity in Renal Masses: Correlation ofÂArterial Spin-Labeled and Dynamic Contrast-Enhanced Magnetic Resonance Imaging Assessments. Clinical Genitourinary Cancer, 2016, 14, e25-e36.	1.9	44
87	Clear Cell Renal Cell Carcinoma Subtypes Identified by BAP1 and PBRM1 Expression. Journal of Urology, 2016, 195, 180-187.	0.4	113
88	Phase II trial of high-dose interleukin-2 (IL-2) and stereotactic radiation therapy (SABR) for metastatic clear cell renal cell carcinoma (ccRCC): Interim analysis Journal of Clinical Oncology, 2016, 34, 532-532.	1.6	9
89	Unsaturated Fatty Acids Stimulate Tumor Growth through Stabilization of β-Catenin. Cell Reports, 2015, 13, 495-503.	6.4	57
90	Identification of CREB3L1 as a Biomarker Predicting Doxorubicin Treatment Outcome. PLoS ONE, 2015, 10, e0129233.	2.5	18

#	Article	IF	CITATIONS
91	Selective Efficacy of Temsirolimus on Bone Metastases in Chromophobe Renal Cell Carcinoma. Clinical Genitourinary Cancer, 2015, 13, e321-e323.	1.9	3
92	Prospective evaluation of plasma levels of ANGPT2, TuM2PK, and VEGF in patients with renal cell carcinoma. BMC Urology, 2015, 15, 24.	1.4	11
93	Loss of PBRM1 and BAP1 expression is less common in non–clear cell renal cell carcinoma than in clear cell renal cell carcinoma. Urologic Oncology: Seminars and Original Investigations, 2015, 33, 23.e9-23.e14.	1.6	40
94	Spectrum of diverse genomic alterations define non–clear cell renal carcinoma subtypes. Nature Genetics, 2015, 47, 13-21.	21.4	310
95	High-throughput simultaneous screen and counterscreen identifies homoharringtonine as synthetic lethal with von Hippel-Lindau loss in renal cell carcinoma. Oncotarget, 2015, 6, 16951-16962.	1.8	28
96	Establishing a human renal cell carcinoma tumorgraft platform for preclinical drug testing. Nature Protocols, 2014, 9, 1848-1859.	12.0	55
97	REDD1/DDIT4-Independent mTORC1 Inhibition and Apoptosis by Glucocorticoids in Thymocytes. Molecular Cancer Research, 2014, 12, 867-877.	3.4	24
98	<i>Bap1</i> is essential for kidney function and cooperates with <i>Vhl</i> in renal tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16538-16543.	7.1	123
99	Loss of BAP1 protein expression is an independent marker of poor prognosis in patients with lowâ€risk clear cell renal cell carcinoma. Cancer, 2014, 120, 1059-1067.	4.1	129
100	Molecular Genetics of Clear-Cell Renal Cell Carcinoma. Journal of Clinical Oncology, 2014, 32, 1968-1976.	1.6	252
101	BAP1 Immunohistochemistry Predicts Outcomes in a Multi-Institutional Cohort with Clear Cell Renal Cell Carcinoma. Journal of Urology, 2014, 191, 603-610.	0.4	69
102	Loss of BAP1 and PBRM1 protein expression and its association with clear cell renal cell call cell carcinoma-specific survival Journal of Clinical Oncology, 2014, 32, 414-414.	1.6	2
103	Simultaneous isolation of high-quality DNA, RNA, miRNA and proteins from tissues for genomic applications. Nature Protocols, 2013, 8, 2240-2255.	12.0	114
104	Cooperation and Antagonism among Cancer Genes: The Renal Cancer Paradigm. Cancer Research, 2013, 73, 4173-4179.	0.9	80
105	A Novel Germline Mutation in <i>BAP1</i> Predisposes to Familial Clear-Cell Renal Cell Carcinoma. Molecular Cancer Research, 2013, 11, 1061-1071.	3.4	135
106	Trex1 regulates lysosomal biogenesis and interferon-independent activation of antiviral genes. Nature Immunology, 2013, 14, 61-71.	14.5	122
107	Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: a retrospective analysis with independent validation. Lancet Oncology, The, 2013, 14, 159-167.	10.7	383
108	Ablation of a Site of Progression With Stereotactic Body Radiation Therapy Extends Sunitinib Treatment From 14 to 22 Months. Journal of Clinical Oncology, 2013, 31, e401-e403.	1.6	29

#	Article	IF	CITATIONS
109	Platelet-Derived Growth Factor/Vascular Endothelial Growth Factor Receptor Inactivation by Sunitinib Results in Tsc1/Tsc2-Dependent Inhibition of TORC1. Molecular and Cellular Biology, 2013, 33, 3762-3779.	2.3	22
110	PBRM1 and BAP1 as Novel Targets for Renal Cell Carcinoma. Cancer Journal (Sudbury, Mass), 2013, 19, 324-332.	2.0	94
111	Prolonged Survival of a Patient With Papillary Renal Cell Carcinoma and Brain Metastases Using Pazopanib. Journal of Clinical Oncology, 2013, 31, e114-e117.	1.6	31
112	A Validated Tumorgraft Model Reveals Activity of Dovitinib Against Renal Cell Carcinoma. Science Translational Medicine, 2012, 4, 137ra75.	12.4	159
113	BAP1 loss defines a new class of renal cell carcinoma. Nature Genetics, 2012, 44, 751-759.	21.4	791
114	Research Translation and Personalized Medicine. , 2012, , 161-191.		5
115	Brain metastases (BMs) from metastatic renal cell carcinoma (RCC) in patients (pts) treated with molecularly targeted agents (MTAs) Journal of Clinical Oncology, 2012, 30, e15066-e15066.	1.6	0
116	Neoadjuvant therapy preceding cytoreductive nephrectomy to develop individualized first-line therapy with everolimus for advanced renal cell carcinoma (RCC) Journal of Clinical Oncology, 2012, 30, TPS4678-TPS4678.	1.6	0
117	TFEB, a novel mTORC1 effector implicated in lysosome biogenesis, endocytosis and autophagy. Cell Cycle, 2011, 10, 3987-3988.	2.6	31
118	Chemical inhibition of RNA viruses reveals REDD1 as a host defense factor. Nature Chemical Biology, 2011, 7, 712-719.	8.0	70
119	mTORC1 activation in childhood ependymoma and response to sirolimus. Journal of Neuro-Oncology, 2011, 103, 797-801.	2.9	10
120	Regulation of TFEB and V-ATPases by mTORC1. EMBO Journal, 2011, 30, 3242-3258.	7.8	379
121	Interplay Between pVHL and mTORC1 Pathways in Clear-Cell Renal Cell Carcinoma. Molecular Cancer Research, 2011, 9, 1255-1265.	3.4	97
122	Cell-Type-Dependent Regulation of mTORC1 by REDD1 and the Tumor Suppressors TSC1/TSC2 and LKB1 in Response to Hypoxia. Molecular and Cellular Biology, 2011, 31, 1870-1884.	2.3	70
123	Exploring a glycolytic inhibitor for the treatment of an FH-deficient type-2 papillary RCC. Nature Reviews Urology, 2011, 8, 165-171.	3.8	41
124	Sirolimus and Temsirolimus for Epithelioid Angiomyolipoma. Journal of Clinical Oncology, 2010, 28, e65-e68.	1.6	56
125	Structural Analysis and Functional Implications of the Negative mTORC1 Regulator REDD1 [,] . Biochemistry, 2010, 49, 2491-2501.	2.5	61
126	Loss of Tsc1, but not Pten, in renal tubular cells causes polycystic kidney disease by activating mTORC1. Human Molecular Genetics, 2009, 18, 4428-4441.	2.9	58

James Brugarolas

#	Article	lF	CITATIONS
127	mTORC1 Signaling and Hypoxia. , 2009, , 75-97.		1
128	Sirolimus in Metatastic Renal Cell Carcinoma. Journal of Clinical Oncology, 2008, 26, 3457-3460.	1.6	13
129	Renal-Cell Carcinoma — Molecular Pathways and Therapies. New England Journal of Medicine, 2007, 356, 185-187.	27.0	251
130	Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes and Development, 2004, 18, 2893-2904.	5.9	1,166
131	mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nature Medicine, 2004, 10, 594-601.	30.7	913
132	Dysregulation of HIF and VEGF is a unifying feature of the familial hamartoma syndromes. Cancer Cell, 2004, 6, 7-10.	16.8	160
133	p21 Is a Critical CDK2 Regulator Essential for Proliferation Control in Rb-deficient Cells. Journal of Cell Biology, 1998, 141, 503-514.	5.2	145
134	Deletion of p21 cannot substitute for p53 loss in rescue of mdm2 null lethality. Nature Genetics, 1997, 16, 336-337.	21.4	16
135	Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature, 1995, 377, 552-557.	27.8	1,218