
## Annmarie G Carlton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6498519/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Thank You to Our 2021 Peer Reviewers. Reviews of Geophysics, 2022, 60, .                                                                                                                                 | 23.0 | 0         |
| 2  | Investigating the evolution of water-soluble organic carbon in evaporating cloud water.<br>Environmental Science Atmospheres, 2021, 1, 21-30.                                                            | 2.4  | 2         |
| 3  | Thank You to Our Peer Reviewers for 2020. Reviews of Geophysics, 2021, 59, e2021RG000741.                                                                                                                | 23.0 | 0         |
| 4  | Diurnal and Seasonal Variations in the Phase State of Secondary Organic Aerosol Material over the Contiguous US Simulated in CMAQ. ACS Earth and Space Chemistry, 2021, 5, 1971-1982.                    | 2.7  | 12        |
| 5  | Urban aerosol chemistry at a land–water transition site during summer – Part 1: Impact of<br>agricultural and industrial ammonia emissions. Atmospheric Chemistry and Physics, 2021, 21,<br>13051-13065. | 4.9  | 2         |
| 6  | Box Model Intercomparison of Cloud Chemistry. Journal of Geophysical Research D: Atmospheres, 2021, 126, .                                                                                               | 3.3  | 7         |
| 7  | Partitioning of Ambient Organic Gases to Inorganic Salt Solutions: Influence of Salt Identity, Ionic<br>Strength, and pH. Geophysical Research Letters, 2021, 48, e2021GL095247.                         | 4.0  | 5         |
| 8  | Urban aerosol chemistry at a land–water transition site during summer – PartÂ2: Aerosol pH and<br>liquid water content. Atmospheric Chemistry and Physics, 2021, 21, 18271-18281.                        | 4.9  | 2         |
| 9  | Multiphase Atmospheric Chemistry in Liquid Water: Impacts and Controllability of Organic Aerosol.<br>Accounts of Chemical Research, 2020, 53, 1715-1723.                                                 | 15.6 | 23        |
| 10 | Changing Nature of Organic Carbon over the United States. Environmental Science & Technology, 2020, 54, 10524-10532.                                                                                     | 10.0 | 11        |
| 11 | No evidence for brown carbon formation in ambient particles undergoing atmospherically relevant drying. Environmental Sciences: Processes and Impacts, 2020, 22, 442-450.                                | 3.5  | 8         |
| 12 | Thank You to Our Peer Reviewers for 2019. Reviews of Geophysics, 2020, 58, no.                                                                                                                           | 23.0 | 0         |
| 13 | On Aerosol Liquid Water and Sulfate Associations: The Potential for Fine Particulate Matter Biases.<br>Atmosphere, 2020, 11, 194.                                                                        | 2.3  | 9         |
| 14 | Overview of the CPOC Pilot Study at Whiteface Mountain, NY: Cloud Processing of Organics within Clouds (CPOC). Bulletin of the American Meteorological Society, 2020, 101, E1820-E1841.                  | 3.3  | 8         |
| 15 | Differences in fine particle chemical composition on clear and cloudy days. Atmospheric Chemistry and Physics, 2020, 20, 11607-11624.                                                                    | 4.9  | 7         |
| 16 | Assessing the effects of power grid expansion on human health externalities. Socio-Economic<br>Planning Sciences, 2019, 66, 92-104.                                                                      | 5.0  | 16        |
| 17 | A Metamodeling Framework for Quantifying Health Damages of Power Grid Expansion Plans.<br>International Journal of Environmental Research and Public Health, 2019, 16, 1857.                             | 2.6  | 1         |
| 18 | Aerosol Optical Thickness: Organic Composition, Associated Particle Water, and Aloft Extinction. ACS<br>Earth and Space Chemistry. 2019. 3. 403-412.                                                     | 2.7  | 7         |

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Chemical composition of ultrafine aerosol particles in central Amazonia during the wet season.<br>Atmospheric Chemistry and Physics, 2019, 19, 13053-13066.                                                        | 4.9  | 11        |
| 20 | Controlling Biogenic Particle Mass with NOx and SOx. Em: Air and Waste Management Association's<br>Magazine for Environmental Managers, 2019, null, 9-13.                                                          | 0.2  | 0         |
| 21 | Vertically resolved concentration and liquid water content of atmospheric nanoparticles at the US<br>DOE Southern Great Plains site. Atmospheric Chemistry and Physics, 2018, 18, 311-326.                         | 4.9  | 31        |
| 22 | Synthesis of the Southeast Atmosphere Studies: Investigating Fundamental Atmospheric Chemistry Questions. Bulletin of the American Meteorological Society, 2018, 99, 547-567.                                      | 3.3  | 62        |
| 23 | Southeast Atmosphere Studies: learning from model-observation syntheses. Atmospheric Chemistry and Physics, 2018, 18, 2615-2651.                                                                                   | 4.9  | 36        |
| 24 | Detailed Characterization of Organic Carbon from Fire: Capitalizing on Analytical Advances To<br>Improve Atmospheric Models. ACS Symposium Series, 2018, , 349-361.                                                | 0.5  | 0         |
| 25 | Generation expansion planning considering health and societal damages – A simulation-based optimization approach. Energy, 2018, 164, 951-963.                                                                      | 8.8  | 32        |
| 26 | Additional Benefits of Federal Air-Quality Rules: Model Estimates of Controllable Biogenic Secondary<br>Organic Aerosol. Environmental Science & Technology, 2018, 52, 9254-9265.                                  | 10.0 | 36        |
| 27 | Potential of Aerosol Liquid Water to Facilitate Organic Aerosol Formation: Assessing Knowledge<br>Gaps about Precursors and Partitioning. Environmental Science & Technology, 2017, 51, 3327-3335.                 | 10.0 | 55        |
| 28 | The Essential Role for Laboratory Studies in Atmospheric Chemistry. Environmental Science &<br>Technology, 2017, 51, 2519-2528.                                                                                    | 10.0 | 75        |
| 29 | Simulating Aqueous-Phase Isoprene-Epoxydiol (IEPOX) Secondary Organic Aerosol Production During<br>the 2013 Southern Oxidant and Aerosol Study (SOAS). Environmental Science & Technology, 2017,<br>51, 5026-5034. | 10.0 | 86        |
| 30 | Federal Science Matters: We All Live Downwind of a Harvey-Arkema Disaster. Environmental Science<br>& Technology, 2017, 51, 10930-10931.                                                                           | 10.0 | 1         |
| 31 | Why and How to Write a Highâ€Impact Review Paper: Lessons From Eight Years of Editorial Board Service<br>to <i>Reviews of Geophysics</i> . Reviews of Geophysics, 2017, 55, 860-863.                               | 23.0 | 1         |
| 32 | Multiphase Chemistry: Experimental Design for Coordinated Measurement and Modeling Studies of<br>Cloud Processing at a Mountaintop. Bulletin of the American Meteorological Society, 2017, 98,<br>ES163-ES167.     | 3.3  | 8         |
| 33 | Urban emissions of water vapor in winter. Journal of Geophysical Research D: Atmospheres, 2017, 122,<br>9467-9484.                                                                                                 | 3.3  | 18        |
| 34 | On the implications of aerosol liquid water and phase separation for organic aerosol mass.<br>Atmospheric Chemistry and Physics, 2017, 17, 343-369.                                                                | 4.9  | 189       |
| 35 | Semivolatile POA and parameterized total combustion SOA in CMAQv5.2: impacts on source strength and partitioning. Atmospheric Chemistry and Physics, 2017, 17, 11107-11133.                                        | 4.9  | 109       |
| 36 | A framework for expanding aqueous chemistry in the Community Multiscale Air Quality (CMAQ) model version 5.1. Geoscientific Model Development, 2017, 10, 1587-1605.                                                | 3.6  | 50        |

| #  | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | High Electricity Demand in the Northeast U.S.: PJM Reliability Network and Peaking Unit Impacts on Air<br>Quality. Environmental Science & Technology, 2016, 50, 8375-8384.                                                             | 10.0 | 10        |
| 38 | Reconciling satellite aerosol optical thickness and surface fine particle mass through aerosol liquid water. Geophysical Research Letters, 2016, 43, 11,903.                                                                            | 4.0  | 18        |
| 39 | Aerosol optical properties in the southeastern United States in summer – PartÂ1: Hygroscopic growth.<br>Atmospheric Chemistry and Physics, 2016, 16, 4987-5007.                                                                         | 4.9  | 88        |
| 40 | Identifying precursors and aqueous organic aerosol formation pathways during the SOAS campaign.<br>Atmospheric Chemistry and Physics, 2016, 16, 14409-14420.                                                                            | 4.9  | 33        |
| 41 | Liquid Water: Ubiquitous Contributor to Aerosol Mass. Environmental Science and Technology<br>Letters, 2016, 3, 257-263.                                                                                                                | 8.7  | 121       |
| 42 | Fine-particle water and pH in the southeastern United States. Atmospheric Chemistry and Physics, 2015, 15, 5211-5228.                                                                                                                   | 4.9  | 413       |
| 43 | Modeling the formation and aging of secondary organic aerosols in Los Angeles during CalNex 2010.<br>Atmospheric Chemistry and Physics, 2015, 15, 5773-5801.                                                                            | 4.9  | 139       |
| 44 | Gas and aerosol carbon in California: comparison of measurements and model predictions in Pasadena and Bakersfield. Atmospheric Chemistry and Physics, 2015, 15, 5243-5258.                                                             | 4.9  | 48        |
| 45 | Decreasing Aerosol Water Is Consistent with OC Trends in the Southeast U.S Environmental Science<br>& Technology, 2015, 49, 7843-7850.                                                                                                  | 10.0 | 47        |
| 46 | Temporalization of Peak Electric Generation Particulate Matter Emissions during High Energy Demand<br>Days. Environmental Science & Technology, 2015, 49, 4696-4704.                                                                    | 10.0 | 14        |
| 47 | Regional Air Quality Model Application of the Aqueous-Phase Photo Reduction of Atmospheric Oxidized Mercury by Dicarboxylic Acids. Atmosphere, 2014, 5, 1-15.                                                                           | 2.3  | 23        |
| 48 | The Data Gap: Can a Lack of Monitors Obscure Loss of Clean Air Act Benefits in Fracking Areas?.<br>Environmental Science & Technology, 2014, 48, 893-894.                                                                               | 10.0 | 23        |
| 49 | Aerosol Liquid Water Driven by Anthropogenic Nitrate: Implications for Lifetimes of Water-Soluble<br>Organic Gases and Potential for Secondary Organic Aerosol Formation. Environmental Science &<br>Technology, 2014, 48, 11127-11136. | 10.0 | 94        |
| 50 | Partitioning of HNO3, H2O2 and SO2 to cloud ice: Simulations with CMAQ. Atmospheric Environment, 2014, 88, 239-246.                                                                                                                     | 4.1  | 1         |
| 51 | Trends in particle-phase liquid water during the Southern Oxidant and Aerosol Study. Atmospheric<br>Chemistry and Physics, 2014, 14, 10911-10930.                                                                                       | 4.9  | 75        |
| 52 | Organosulfates in cloud water above the Ozarks' isoprene source region. Atmospheric Environment, 2013, 77, 231-238.                                                                                                                     | 4.1  | 52        |
| 53 | Particle partitioning potential of organic compounds is highest in the Eastern US and driven by anthropogenic water. Atmospheric Chemistry and Physics, 2013, 13, 10203-10214.                                                          | 4.9  | 162       |
| 54 | Analyzing experimental data and model parameters: implications for predictions of SOA using chemical transport models. Atmospheric Chemistry and Physics, 2013, 13, 12073-12088.                                                        | 4.9  | 38        |

| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Evaluation of factors controlling global secondary organic aerosol production from cloud processes. Atmospheric Chemistry and Physics, 2013, 13, 1913-1926.                                                               | 4.9  | 27        |
| 56 | Combining Bayesian methods and aircraft observations to constrain the<br>HO <sup>.</sup> + NO <sub>2</sub> reaction<br>rate. Atmospheric Chemistry and Physics, 2012, 12, 653-667.                                        | 4.9  | 33        |
| 57 | Aerosols from Fires: An Examination of the Effects on Ozone Photochemistry in the Western United<br>States. Environmental Science & Technology, 2012, 46, 11878-11886.                                                    | 10.0 | 61        |
| 58 | Global inâ€cloud production of secondary organic aerosols: Implementation of a detailed chemical mechanism in the GFDL atmospheric model AM3. Journal of Geophysical Research, 2012, 117, .                               | 3.3  | 57        |
| 59 | Modeling secondary organic aerosol formation from xylene and aromatic mixtures using a dynamic partitioning approach incorporating particle aqueous-phase chemistry (II). Atmospheric Environment, 2012, 56, 250-260.     | 4.1  | 8         |
| 60 | Photochemical Modeling of the Ozark Isoprene Volcano: MEGAN, BEIS, and Their Impacts on Air Quality Predictions. Environmental Science & amp; Technology, 2011, 45, 4438-4445.                                            | 10.0 | 114       |
| 61 | Modeling secondary organic aerosol using a dynamic partitioning approach incorporating particle aqueous-phase chemistry. Atmospheric Environment, 2011, 45, 1126-1137.                                                    | 4.1  | 25        |
| 62 | Evaluation of simulated photochemical partitioning of oxidized nitrogen in the upper troposphere.<br>Atmospheric Chemistry and Physics, 2011, 11, 275-291.                                                                | 4.9  | 37        |
| 63 | Impact of a new condensed toluene mechanism on air quality model predictions in the US.<br>Geoscientific Model Development, 2011, 4, 183-193.                                                                             | 3.6  | 53        |
| 64 | The contribution of marine organics to the air quality of the western United States. Atmospheric Chemistry and Physics, 2010, 10, 7415-7423.                                                                              | 4.9  | 21        |
| 65 | SOA from methylglyoxal in clouds and wet aerosols: Measurement and prediction of key products.<br>Atmospheric Environment, 2010, 44, 5218-5226.                                                                           | 4.1  | 181       |
| 66 | Model Representation of Secondary Organic Aerosol in CMAQv4.7. Environmental Science &<br>Technology, 2010, 44, 8553-8560.                                                                                                | 10.0 | 364       |
| 67 | To What Extent Can Biogenic SOA be Controlled?. Environmental Science & Technology, 2010, 44, 3376-3380.                                                                                                                  | 10.0 | 254       |
| 68 | Examination of the impact of photoexcited NO2 chemistry on regional air quality. Atmospheric<br>Environment, 2009, 43, 6383-6387.                                                                                         | 4.1  | 20        |
| 69 | A review of Secondary Organic Aerosol (SOA) formation from isoprene. Atmospheric Chemistry and Physics, 2009, 9, 4987-5005.                                                                                               | 4.9  | 750       |
| 70 | Oligomers formed through in-cloud methylglyoxal reactions: Chemical composition, properties, and mechanisms investigated by ultra-high resolution FT-ICR mass spectrometry. Atmospheric Environment, 2008, 42, 1476-1490. | 4.1  | 325       |
| 71 | CMAQ Model Performance Enhanced When In-Cloud Secondary Organic Aerosol is Included:<br>Comparisons of Organic Carbon Predictions with Measurements. Environmental Science &<br>Technology, 2008, 42, 8798-8802.          | 10.0 | 183       |
| 72 | Secondary organic aerosol yields from cloudâ€processing of isoprene oxidation products. Geophysical<br>Research Letters, 2008, 35, .                                                                                      | 4.0  | 238       |

| #  | Article                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Atmospheric oxalic acid and SOA production from glyoxal: Results of aqueous photooxidation experiments. Atmospheric Environment, 2007, 41, 7588-7602.                      | 4.1  | 487       |
| 74 | Link between isoprene and secondary organic aerosol (SOA): Pyruvic acid oxidation yields low volatility organic acids in clouds. Geophysical Research Letters, 2006, 33, . | 4.0  | 304       |
| 75 | Evidence for Oligomer Formation in Clouds:Â Reactions of Isoprene Oxidation Products.<br>Environmental Science & Technology, 2006, 40, 4956-4960.                          | 10.0 | 175       |
| 76 | Isoprene Forms Secondary Organic Aerosol through Cloud Processing:Â Model Simulations.<br>Environmental Science & Technology, 2005, 39, 4441-4446.                         | 10.0 | 405       |
| 77 | Design of a Cost-Effective Weighing Facility for PM2.5 Quality Assurance. Journal of the Air and Waste Management Association, 2002, 52, 506-510.                          | 1.9  | 7         |
| 78 | Microanalysis Methods for Characterization of Personal Aerosol Exposures. Aerosol Science and Technology, 1999, 31, 66-80.                                                 | 3.1  | 23        |