
Vincenzo Sorrentino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6498389/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mutations in the Cardiac Ryanodine Receptor Gene (<i>hRyR2</i>) Underlie Catecholaminergic Polymorphic Ventricular Tachycardia. Circulation, 2001, 103, 196-200.	1.6	1,291
2	Ryanodine receptors: how many, where and why?. Trends in Pharmacological Sciences, 1993, 14, 98-103.	4.0	302
3	<i>MECP2</i> mutation in male patients with nonâ€specific Xâ€linked mental retardation. FEBS Letters, 2000, 481, 285-288.	1.3	208
4	Binding of an ankyrin-1 isoform to obscurin suggests a molecular link between the sarcoplasmic reticulum and myofibrils in striated muscles. Journal of Cell Biology, 2003, 160, 245-253.	2.3	177
5	Molecular genetics of ryanodine receptors Ca2+-release channels. Cell Calcium, 2002, 32, 307-319.	1.1	128
6	Pluripotency Regulators in Human Mesenchymal Stem Cells: Expression of NANOG But Not of OCT-4 and SOX-2. Stem Cells and Development, 2011, 20, 915-923.	1.1	125
7	Requirement of functional ryanodine receptor type 3 for astrocyte migration. FASEB Journal, 2002, 16, 1-25.	0.2	108
8	<i>α</i> and <i>β</i> isoforms of ryanodine receptor from chicken skeletal muscle are the homologues of mammalian RyR1 and RyR3. Biochemical Journal, 1996, 315, 207-216.	1.7	106
9	A novel c-kit transcript, potentially encoding a truncated receptor, originates within a kit gene intron in mouse spermatids. Developmental Biology, 1992, 152, 203-207.	0.9	103
10	Differential distribution of ryanodine receptor type 3 (RyR3) gene product in mammalian skeletal muscles. Biochemical Journal, 1996, 316, 19-23.	1.7	100
11	Regulation of Calcium Sparks and Spontaneous Transient Outward Currents by RyR3 in Arterial Vascular Smooth Muscle Cells. Circulation Research, 2001, 89, 1051-1057.	2.0	100
12	Characterization and mapping of the 12kDa FK506-binding protein (FKBP12)-binding site on different isoforms of the ryanodine receptor and of the inositol 1,4,5-trisphosphate receptor. Biochemical Journal, 2001, 354, 413-422.	1.7	83
13	Expression of the Ryanodine Receptor Type 3 Calcium Release Channel during Development and Differentiation of Mammalian Skeletal Muscle Cells. Journal of Biological Chemistry, 1997, 272, 19808-19813.	1.6	82
14	Type-3 Ryanodine Receptors Mediate Hypoxia-, but Not Neurotransmitter-induced Calcium Release and Contraction in Pulmonary Artery Smooth Muscle Cells. Journal of General Physiology, 2005, 125, 427-440.	0.9	82
15	Cyclic Adenosine Diphosphate Ribose Activates Ryanodine Receptors, whereas NAADP Activates Two-pore Domain Channels. Journal of Biological Chemistry, 2011, 286, 9136-9140.	1.6	78
16	Phenotypic and molecular characterisation of the Aarskog–Scott syndrome: a survey of the clinical variability in light of FGD1 mutation analysis in 46 patients. European Journal of Human Genetics, 2004, 12, 16-23.	1.4	75
17	The Ryanodine Receptor Family of Intracellular Calcium Release Channels. Advances in Pharmacology, 1995, 33, 67-90.	1.2	74
18	Contribution of Ryanodine Receptor Type 3 to Ca2+ Sparks in Embryonic Mouse Skeletal Muscle. Biophysical Journal, 1999, 77, 1394-1403.	0.2	72

#	Article	IF	CITATIONS
19	Frequency and localization of mutations in the 106 exons of theRYR1 gene in 50 individuals with malignant hyperthermia. Human Mutation, 2006, 27, 830-830.	1.1	72
20	Ca 2+ Sparks and Waves in Canine Purkinje Cells. Circulation Research, 2005, 97, 35-43.	2.0	71
21	Junctophilin 1 and 2 Proteins Interact with the L-type Ca2+ Channel Dihydropyridine Receptors (DHPRs) in Skeletal Muscle. Journal of Biological Chemistry, 2011, 286, 43717-43725.	1.6	70
22	Binding of Germ Cells to Mutant SId Sertoli Cells Is Defective and Is Rescued by Expression of the Transmembrane Form of the c-kit Ligand. Developmental Biology, 1993, 157, 182-190.	0.9	66
23	The Sarcoplasmic Reticulum: An Organized Patchwork of Specialized Domains. Traffic, 2008, 9, 1044-1049.	1.3	66
24	Type 3 and Type 1 Ryanodine Receptors Are Localized in Triads of the Same Mammalian Skeletal Muscle Fibers. Journal of Cell Biology, 1999, 146, 621-630.	2.3	65
25	The Conserved Sites for the FK506-binding Proteins in Ryanodine Receptors and Inositol 1,4,5-Trisphosphate Receptors Are Structurally and Functionally Different. Journal of Biological Chemistry, 2001, 276, 47715-47724.	1.6	65
26	Comparison of Ca2+ Sparks Produced Independently by Two Ryanodine Receptor Isoforms (Type 1 or) Tj ETQq0	0 0 rgBT /	Overlock 10 T
27	Obscurin is required for ankyrinB-dependent dystrophin localization and sarcolemma integrity. Journal of Cell Biology, 2013, 200, 523-536.	2.3	63
28	Intracellular Ca2+ release channels in evolution. Current Opinion in Genetics and Development, 2000, 10, 662-667.	1.5	62
29	RYR2 Proteins Contribute to the Formation of Ca2+ Sparks in Smooth Muscle. Journal of General Physiology, 2004, 123, 377-386.	0.9	62
30	Characterization and mapping of the 12ÂkDa FK506-binding protein (FKBP12)-binding site on different isoforms of the ryanodine receptor and of the inositol 1,4,5-trisphosphate receptor. Biochemical Journal, 2001, 354, 413.	1.7	60
31	Spatially segregated control of Ca2+release in developing skeletal muscle of mice. Journal of Physiology, 1999, 521, 483-495.	1.3	59
32	RyR1 and RyR3 isoforms provide distinct intracellular Ca2+signals in HEK 293 cells. Journal of Cell Science, 2002, 115, 2497-2504.	1.2	57
33	A pivotal role for cADPRâ€mediated Ca 2+ signaling: regulation of endothelinâ€induced contraction in peritubular smooth muscle cells. FASEB Journal, 2002, 16, 697-705.	0.2	56
34	Bcl-2 binds to and inhibits ryanodine receptors. Journal of Cell Science, 2014, 127, 2782-92.	1.2	55
35	A Mutation in the <i>CASQ1</i> Gene Causes a Vacuolar Myopathy with Accumulation of Sarcoplasmic Reticulum Protein Aggregates. Human Mutation, 2014, 35, 1163-1170.	1.1	53

	Molecular interactions with obscurin are involved in the localization of muscle-specific small		
36	ankyrin1 isoforms to subcompartments of the sarcoplasmic reticulum. Experimental Cell Research,	1.2	51
	2006, 312, 3546-3558.		

VINCENZO SORRENTINO

#	Article	IF	CITATIONS
37	Functional and genetic characterization of clinical malignant hyperthermia crises: a multi-centre study. Orphanet Journal of Rare Diseases, 2014, 9, 8.	1.2	51
38	Identification and characterization of three novel mutations in the <i>CASQ1</i> gene in four patients with tubular aggregate myopathy. Human Mutation, 2017, 38, 1761-1773.	1.1	51
39	Structure and mutation analysis of the glycogen storage disease type 1b gene. FEBS Letters, 1998, 436, 247-250.	1.3	50
40	FKBP12 associates tightly with the skeletal muscle type 1 ryanodine receptor, but not with other intracellular calcium release channels. FEBS Letters, 2001, 505, 97-102.	1.3	50
41	Molecular structure and tissue distribution of ryanodine receptors calcium channels. Medicinal Research Reviews, 1995, 15, 313-323.	5.0	49
42	Expression of the Ryanodine Receptor Type 3 in Skeletal Muscle A New Partner in Excitation-Contraction Coupling?. Trends in Cardiovascular Medicine, 1999, 9, 54-61.	2.3	49
43	RyR1 and RyR3 isoforms provide distinct intracellular Ca2+ signals in HEK 293 cells. Journal of Cell Science, 2002, 115, 2497-504.	1.2	45
44	The Growth-Inhibitory Block of TGF-β Is Located Close to the G1/S Border in the Cell Cycle. Experimental Cell Research, 1995, 217, 477-483.	1.2	44
45	Mutations in the glucose-6-phosphate transporter (G6PT) gene in patients with glycogen storage diseases type 1b and 1c. FEBS Letters, 1999, 459, 255-258.	1.3	44
46	Identification and Characterization of a Highly Conserved Protein Absent in the Alport Syndrome (A), Mental Retardation (M), Midface Hypoplasia (M), and Elliptocytosis (E) Contiguous Gene Deletion Syndrome (AMME). Genomics, 1999, 55, 335-340.	1.3	44
47	The block of ryanodine receptors selectively inhibits fetal myoblast differentiation. Journal of Cell Science, 2003, 116, 1589-1597.	1.2	43
48	cDNA cloning reveals a tissue specific expression of alternatively spliced transcripts of the ryanodine receptor type 3 (RyR3) calcium release channel. FEBS Letters, 1996, 394, 76-82.	1.3	41
49	A mutation in the pleckstrin homology (PH) domain of the FGD1 gene in an Italian family with faciogenital dysplasia (Aarskog-Scott syndrome). FEBS Letters, 2000, 478, 216-220.	1.3	40
50	Organization of junctional sarcoplasmic reticulum proteins in skeletal muscle fibers. Journal of Muscle Research and Cell Motility, 2015, 36, 501-515.	0.9	40
51	Contractile impairment and structural alterations of skeletal muscles from knockout mice lacking type 1 and type 3 ryanodine receptors. FEBS Letters, 1998, 422, 160-164.	1.3	39
52	Modulation of calcium signalling by dominant negative splice variant of ryanodine receptor subtype 3 in native smooth muscle cells. Cell Calcium, 2006, 40, 11-21.	1.1	37
53	Dihydropyridine Receptor and Ryanodine Receptor Gene Expression in Long-Term Denervated Rat Muscles. Biochemical and Biophysical Research Communications, 1997, 240, 612-617.	1.0	36
54	Molecular genetics of Ca2+ stores and intracellular Ca2+ signalling. Trends in Pharmacological Sciences, 2001, 22, 459-464.	4.0	35

#	Article	IF	CITATIONS
55	Spatial organization of RYRs and BK channels underlying the activation of STOCs by Ca2+ sparks in airway myocytes. Journal of General Physiology, 2011, 138, 195-209.	0.9	35
56	The 12 kDa FK506-binding protein, FKBP12, modulates the Ca2+-flux properties of the type-3 ryanodine receptor. Journal of Cell Science, 2004, 117, 1129-1137.	1.2	33
57	Syntillas Release Ca2+ at a Site Different from the Microdomain Where Exocytosis Occurs in Mouse Chromaffin Cells. Biophysical Journal, 2006, 90, 2027-2037.	0.2	33
58	Regional and Age-related Differences in mRNA Composition of Intracellular Ca2+-release Channels of Rat Cardiac Myocytes. Journal of Molecular and Cellular Cardiology, 1997, 29, 1023-1036.	0.9	32
59	Ryanodine receptors are expressed and functionally active in mouse spermatogenic cells and their inhibition interferes with spermatogonial differentiation. Journal of Cell Science, 2004, 117, 4127-4134.	1.2	31
60	Attention-deficit/hyperactivity disorder (ADHD) and variable clinical expression of Aarskog-Scott syndrome due to a novelFGD1 gene mutation (R408Q). American Journal of Medical Genetics, Part A, 2005, 135A, 99-102.	0.7	30
61	Spontaneous and voltageâ€activated Ca ²⁺ release in adult mouse skeletal muscle fibres expressing the type 3 ryanodine receptor. Journal of Physiology, 2008, 586, 441-457.	1.3	30
62	Assembly and dynamics of proteins of the longitudinal and junctional sarcoplasmic reticulum in skeletal muscle cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4695-4700.	3.3	30
63	Multi-potent progenitors in freshly isolated and cultured human mesenchymal stem cells: a comparison between adipose and dermal tissue. Cell and Tissue Research, 2011, 344, 85-95.	1.5	30
64	Ryanodine receptors are targeted by anti-apoptotic Bcl-XL involving its BH4 domain and Lys87 from its BH3 domain. Scientific Reports, 2015, 5, 9641.	1.6	30
65	Human pericytes isolated from adipose tissue have better differentiation abilities than their mesenchymal stem cell counterparts. Cell and Tissue Research, 2015, 361, 769-778.	1.5	29
66	Sorcin is an early marker of neurodegeneration, Ca2+ dysregulation and endoplasmic reticulum stress associated to neurodegenerative diseases. Cell Death and Disease, 2020, 11, 861.	2.7	29
67	A novel FLNC frameshift and an OBSCN variant in a family with distal muscular dystrophy. PLoS ONE, 2017, 12, e0186642.	1.1	29
68	Distinct regions of triadin are required for targeting and retention at the junctional domain of the sarcoplasmic reticulum. Biochemical Journal, 2014, 458, 407-417.	1.7	27
69	Not All Pericytes Are Born Equal: Pericytes from Human Adult Tissues Present Different Differentiation Properties. Stem Cells and Development, 2016, 25, 1549-1558.	1.1	27
70	Evidence for the transport of glutathione through ryanodine receptor channel type 1. Biochemical Journal, 2003, 376, 807-812.	1.7	26
71	Calsequestrin, a key protein in striated muscle health and disease. Journal of Muscle Research and Cell Motility, 2021, 42, 267-279.	0.9	25
72	Tissue-Specific Cultured Human Pericytes: Perivascular Cells from Smooth Muscle Tissue Have Restricted Mesodermal Differentiation Ability. Stem Cells and Development, 2016, 25, 674-686.	1.1	24

#	Article	IF	CITATIONS
73	Molecular determinants of homo- and heteromeric interactions of Junctophilin-1 at triads in adult skeletal muscle fibers. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15716-15724.	3.3	24
74	Metyrapone prevents cortisone-induced preadipocyte differentiation by depleting luminal NADPH of the endoplasmic reticulum. Biochemical Pharmacology, 2008, 76, 382-390.	2.0	23
75	Identification of cancer stem cells from human glioblastomas: growth and differentiation capabilities and CD133/promininâ€1 expression. Cell Biology International, 2012, 36, 29-38.	1.4	23
76	Imperatoxin A Enhances Ca2+ Release in Developing Skeletal Muscle Containing Ryanodine Receptor Type 3. Biophysical Journal, 2002, 82, 1319-1328.	0.2	22
77	Sarcoplasmic reticulum: Structural determinants and protein dynamics. International Journal of Biochemistry and Cell Biology, 2011, 43, 1075-1078.	1.2	20
78	Role of Triadin in the Organization of Reticulum Membrane at the Muscle Triad. Journal of Cell Science, 2012, 125, 3443-53.	1.2	20
79	Murine obscurin and Obsl1 have functionally redundant roles in sarcolemmal integrity, sarcoplasmic reticulum organization, and muscle metabolism. Communications Biology, 2019, 2, 178.	2.0	20
80	Adult onset multi/minicore myopathy associated with a mutation in the RYR1 gene. Journal of Neurology, 2004, 251, 102-104.	1.8	18
81	Localization of ank1.5 in the sarcoplasmic reticulum precedes that of SERCA and RyR: relationship with the organization of obscurin in developing sarcomeres. Histochemistry and Cell Biology, 2009, 131, 371-382.	0.8	18
82	Transforming Growth Factor β (TGF-β)Inhibits Expression of Fibrinogen and Factor VII in a Hepatoma Cell Line. Thrombosis and Haemostasis, 1992, 67, 478-483.	1.8	17
83	ATP-induced activation of expressed RyR3 at low free calcium. FEBS Letters, 2000, 471, 256-260.	1.3	17
84	FGD1 as a central regulator of extracellular matrix remodelling – lessons from faciogenital dysplasia. Journal of Cell Science, 2012, 125, 3265-70.	1.2	16
85	A novel type 2 diabetes risk allele increases the promoter activity of the muscle-specific small ankyrin 1 gene. Scientific Reports, 2016, 6, 25105.	1.6	16
86	The potential of obscurin as a therapeutic target in muscle disorders. Expert Opinion on Therapeutic Targets, 2017, 21, 897-910.	1.5	16
87	Molecular determinants of the structural and functional organization of the sarcoplasmic reticulum. Biochimica Et Biophysica Acta - Molecular Cell Research, 2004, 1742, 113-118.	1.9	15
88	Reduced levels of putative endothelial progenitor and CXCR4+ cells in coronary artery disease: Kinetics following percutaneous coronary intervention and association with clinical characteristics. Thrombosis and Haemostasis, 2009, 101, 1138-1146.	1.8	15
89	Yip1B isoform is localized at ER–Golgi intermediate and cis-Golgi compartments and is not required for maintenance of the Golgi structure in skeletal muscle. Histochemistry and Cell Biology, 2015, 143, 235-243.	0.8	14
90	Expression and functional activity of ryanodine receptors (RyRs) during skeletal muscle development. Cell Calcium, 2007, 41, 573-580.	1.1	13

VINCENZO SORRENTINO

#	Article	lF	CITATIONS
91	Constant expression of hexose-6-phosphate dehydrogenase during differentiation of human adipose-derived mesenchymal stem cells. Journal of Molecular Endocrinology, 2008, 41, 125-133.	1.1	13
92	From growth arrest to growth suppression. Journal of Cellular Biochemistry, 1991, 46, 95-101.	1.2	12
93	Imperatoxin A (IpTxa) from Pandinus imperator stimulates [3 H]ryanodine binding to RyR3 channels. FEBS Letters, 2001, 508, 5-10.	1.3	12
94	Maurocalcine interacts with the cardiac ryanodine receptor without inducing channel modification. Biochemical Journal, 2007, 406, 309-315.	1.7	12
95	Ryanodine receptor type 3 why another ryanodine receptor isoform. Frontiers in Bioscience - Landmark, 2003, 8, d176-182.	3.0	11
96	Selective expression of the type 3 isoform of ryanodine receptor Ca2+ release channel (RyR3) in a subset of slow fibers in diaphragm and cephalic muscles of adult rabbits. Biochemical and Biophysical Research Communications, 2005, 337, 195-200.	1.0	11
97	A truncation in the RYR1 gene associated with central core lesions in skeletal muscle fibres. Journal of Medical Genetics, 2006, 44, e67-e67.	1.5	11
98	A novel homozygous mutation in the TRDN gene causes a severe form of pediatric malignant ventricular arrhythmia. Heart Rhythm, 2020, 17, 296-304.	0.3	11
99	Mesenchymal stem cells: from the perivascular environment to clinical applications. Histology and Histopathology, 2018, 33, 1235-1246.	0.5	10
100	The Sarcoplasmic Reticulum of Skeletal Muscle Cells: A Labyrinth of Membrane Contact Sites. Biomolecules, 2022, 12, 488.	1.8	10
101	Cardiac Myocytes Differ in mRNA Composition for Sarcoplasmic Reticulum Ca2+Channels and Ca2+Pumpsa. Annals of the New York Academy of Sciences, 1995, 752, 141-148.	1.8	9
102	Cardiac expression of ryanodine receptor subtype 3; a strategic component in the intracellular Ca2+ release system of Purkinje fibers in large mammalian heart. Journal of Molecular and Cellular Cardiology, 2017, 104, 31-42.	0.9	8
103	Ca2+ Release Induced by Cyclic ADP Ribose in Mice Lacking Type 3 Ryanodine Receptor. Biochemical and Biophysical Research Communications, 2001, 288, 697-702.	1.0	7
104	Impaired Intracellular Ca2+ Dynamics, M-Band and Sarcomere Fragility in Skeletal Muscles of Obscurin KO Mice. International Journal of Molecular Sciences, 2022, 23, 1319.	1.8	7
105	Reduced levels of putative endothelial progenitor and CXCR4+ cells in coronary artery disease: kinetics following percutaneous coronary intervention and association with clinical characteristics. Thrombosis and Haemostasis, 2009, 101, 1138-46.	1.8	7
106	2-Aminopurine Unravels a Role for pRB in the Regulation of Gene Expression by Transforming Growth Factor Î ² . Journal of Biological Chemistry, 1997, 272, 5313-5319.	1.6	6
107	Putative endothelial progenitor cells predict long-term mortality in type-2 diabetes. Endocrine, 2018, 62, 263-266.	1.1	6
108	Calcium Homeostasis Is Modified in Skeletal Muscle Fibers of Small Ankyrin1 Knockout Mice. International Journal of Molecular Sciences, 2019, 20, 3361.	1.8	6

VINCENZO SORRENTINO

#	Article	IF	CITATIONS
109	Levels of circulating CXCR4-positive cells are decreased and negatively correlated with risk factors in cardiac transplant recipients. Heart and Vessels, 2011, 26, 258-266.	0.5	5
110	Ryanodine receptor 1 (<i>RYR1</i>) mutations in two patients with tubular aggregate myopathy. European Journal of Neuroscience, 2022, 56, 4214-4223.	1.2	5
111	Genomic structure and chromosomal location of the human TGFβ-receptor interacting protein-1 (TRIP-1) gene to 1p34.1. FEBS Letters, 1998, 426, 279-282.	1.3	3
112	The multiple alternatives of intracellular calcium signaling: A functionally distinct RyR splicing variant in pancreatic islets. Islets, 2010, 2, 383-385.	0.9	3
113	Multiple regions within junctin drive its interaction with calsequestrin-1 and its localization to triads in skeletal muscle. Journal of Cell Science, 2022, 135, .	1.2	3
114	Functional Electrical Stimulation: A Possible Strategy to Improve Muscle Function in Central Core Disease?. Frontiers in Neurology, 2019, 10, 479.	1.1	2
115	Compound heterozygosity in the GALC gene in a late onset Iranian patient with spastic paraparesis, peripheral neuropathy and leukoencephalopathy. Neurological Sciences, 2017, 38, 1721-1722.	0.9	2
116	Structure and molecular organisation of the sarcoplasmic reticulum of skeletal muscle fibers. Italian Journal of Anatomy and Embryology, 2003, 108, 65-76.	0.1	2
117	c-myc Gene Effects on Cell Growth and Transformation. Annals of the New York Academy of Sciences, 1987, 511, 329-337.	1.8	1
118	Correction to the sequence of the donor splice site of intron 2 of the GSD1b gene. FEBS Letters, 1999, 445, 451-451.	1.3	1
119	Probing luminal negative charge in the type 3 ryanodine receptor. Biochemical and Biophysical Research Communications, 2005, 337, 1072-1079.	1.0	1
120	Ryanodine-Sensitive Calcium Release Channels. , 2000, , 205-219.		1
121	Stem Cells and Muscle Diseases. Journal of Muscle Research and Cell Motility, 2004, 25, 225-230.	0.9	0
122	A proteolytic cleavage to separate the sarcolemma/Tâ€ŧubule from the sarcoplasmic reticulum. Journal of Physiology, 2013, 591, 601-601.	1.3	0
123	Obscurin is required for ankyrinB-dependent dystrophin localization and sarcolemma integrity. Journal of General Physiology, 2013, 141, i9-i9.	0.9	0
124	Alternative Forms and Functions of the c-kit Receptor and Its Ligand During Spermatogenesis. , 1996, , 99-110.		0
125	RYR1-related myopathies: Expanding the spectrum of morphological presentation. Journal of General Physiology, 2022, 154, .	0.9	0
126	Allele-specific silencing by RNAi of R92Q and R173W mutations in cardiac troponin T. Experimental Biology and Medicine, 2022, 247, 805-814.	1.1	0