
Steven C Clifford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6498362/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emergence and maintenance of actionable genetic drivers at medulloblastoma relapse. Neuro-Oncology, 2022, 24, 153-165.	1.2	28
2	Clinical Trials in High-Risk Medulloblastoma: Evolution of the SIOP-Europe HR-MB Trial. Cancers, 2022, 14, 374.	3.7	16
3	Disease-associated KBTBD4 mutations in medulloblastoma elicit neomorphic ubiquitylation activity to promote CoREST degradation. Cell Death and Differentiation, 2022, 29, 1955-1969.	11.2	6
4	Relapsed Medulloblastoma in Pre-Irradiated Patients: Current Practice for Diagnostics and Treatment. Cancers, 2022, 14, 126.	3.7	12
5	Single-cell DNA sequencing identifies risk-associated clonal complexity and evolutionary trajectories in childhood medulloblastoma development. Acta Neuropathologica, 2022, 144, 565-578.	7.7	4
6	Beta-blockers disrupt mitochondrial bioenergetics and increase radiotherapy efficacy independently of beta-adrenergic receptors in medulloblastoma. EBioMedicine, 2022, 82, 104149.	6.1	2
7	The molecular landscape and associated clinical experience in infant medulloblastoma: prognostic significance of secondâ€generation subtypes. Neuropathology and Applied Neurobiology, 2021, 47, 236-250.	3.2	12
8	Inter and intra-tumoral heterogeneity as a platform for personalized therapies in medulloblastoma. , 2021, 228, 107828.		7
9	Inositol treatment inhibits medulloblastoma through suppression of epigenetic-driven metabolic adaptation. Nature Communications, 2021, 12, 2148.	12.8	20
10	Advanced molecular pathology for rare tumours: A national feasibility study and model for centralised medulloblastoma diagnostics. Neuropathology and Applied Neurobiology, 2021, 47, 736-747.	3.2	9
11	Combining multi-site magnetic resonance imaging with machine learning predicts survival in pediatric brain tumors. Scientific Reports, 2021, 11, 18897.	3.3	14
12	SIOP PNET5 MB Trial: History and Concept of a Molecularly Stratified Clinical Trial of Risk-Adapted Therapies for Standard-Risk Medulloblastoma. Cancers, 2021, 13, 6077.	3.7	16
13	DNA methylation-based profiling for paediatric CNS tumour diagnosis and treatment: a population-based study. The Lancet Child and Adolescent Health, 2020, 4, 121-130.	5.6	55
14	VEGFC negatively regulates the growth and aggressiveness of medulloblastoma cells. Communications Biology, 2020, 3, 579.	4.4	9
15	Time, pattern, and outcome of medulloblastoma relapse and their association with tumour biology at diagnosis and therapy: a multicentre cohort study. The Lancet Child and Adolescent Health, 2020, 4, 865-874.	5.6	48
16	Pediatric pan-central nervous system tumor analysis of immune-cell infiltration identifies correlates of antitumor immunity. Nature Communications, 2020, 11, 4324.	12.8	75
17	Evaluation of Prognostic Factors and Role of Participation in a Randomized Trial or a Prospective Registry in Pediatric and Adolescent Nonmetastatic Medulloblastoma – A Report From the HIT 2000 Trial. Advances in Radiation Oncology, 2020, 5, 1158-1169.	1.2	13
18	The AHR pathway represses TGFÎ2-SMAD3 signalling and has a potent tumour suppressive role in SHH medulloblastoma. Scientific Reports, 2020, 10, 148.	3.3	22

STEVEN C CLIFFORD

#	Article	IF	CITATIONS
19	Effects of the growth pattern of medulloblastoma on short-term neurological impairments after surgery: results from the prospective multicenter HIT-SIOP PNET 4 study. Journal of Neurosurgery: Pediatrics, 2020, 25, 425-433.	1.3	2
20	Imaging Characteristics of Wingless Pathway Subgroup Medulloblastomas: Results from the German HIT/SIOP-Trial Cohort. American Journal of Neuroradiology, 2019, 40, 1811-1817.	2.4	9
21	Second-generation molecular subgrouping of medulloblastoma: an international meta-analysis of Group 3 and Group 4 subtypes. Acta Neuropathologica, 2019, 138, 309-326.	7.7	180
22	Medulloblastoma. Nature Reviews Disease Primers, 2019, 5, 11.	30.5	376
23	EANO–EURACAN clinical practice guideline for diagnosis, treatment, and follow-up of post-pubertal and adult patients with medulloblastoma. Lancet Oncology, The, 2019, 20, e715-e728.	10.7	56
24	Prognostic effect of whole chromosomal aberration signatures in standard-risk, non-WNT/non-SHH medulloblastoma: a retrospective, molecular analysis of the HIT-SIOP PNET 4 trial. Lancet Oncology, The, 2018, 19, 1602-1616.	10.7	67
25	Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study. Lancet Oncology, The, 2017, 18, 958-971.	10.7	384
26	TAp73 is a marker of glutamine addiction in medulloblastoma. Genes and Development, 2017, 31, 1738-1753.	5.9	49
27	Minimal methylation classifier (MIMIC): A novel method for derivation and rapid diagnostic detection of disease-associated DNA methylation signatures. Scientific Reports, 2017, 7, 13421.	3.3	21
28	Development of a targeted sequencing approach to identify prognostic, predictive and diagnostic markers in paediatric solid tumours. Oncotarget, 2017, 8, 112036-112050.	1.8	16
29	Risk stratification of childhood medulloblastoma in the molecular era: the current consensus. Acta Neuropathologica, 2016, 131, 821-831.	7.7	478
30	Relapse patterns and outcome after relapse in standard risk medulloblastoma: a report from the HIT-SIOP-PNET4 study. Journal of Neuro-Oncology, 2016, 129, 515-524.	2.9	99
31	Divergent clonal selection dominates medulloblastoma at recurrence. Nature, 2016, 529, 351-357.	27.8	266
32	Combined MYC and P53 Defects Emerge at Medulloblastoma Relapse and Define Rapidly Progressive, Therapeutically Targetable Disease. Cancer Cell, 2015, 27, 72-84.	16.8	165
33	Biomarker-driven stratification of disease-risk in non-metastatic medulloblastoma: Results from the multi-center HIT-SIOP-PNET4 clinical trial. Oncotarget, 2015, 6, 38827-38839.	1.8	51
34	TERT promoter mutation and aberrant hypermethylation are associated with elevated expression in medulloblastoma and characterise the majority of non-infant SHH subgroup tumours. Acta Neuropathologica, 2014, 127, 307-309.	7.7	49
35	Cytogenetic Prognostication Within Medulloblastoma Subgroups. Journal of Clinical Oncology, 2014, 32, 886-896.	1.6	263
36	Improved health-related quality of life outcomes associated with SHH subgroup medulloblastoma in SIOP-UKCCSG PNET3 trial survivors. Acta Neuropathologica, 2014, 128, 151-153.	7.7	10

STEVEN C CLIFFORD

#	Article	IF	CITATIONS
37	DNA methylation profiling of medulloblastoma allows robust subclassification and improved outcome prediction using formalin-fixed biopsies. Acta Neuropathologica, 2013, 125, 359-371.	7.7	133
38	Subgroup-Specific Prognostic Implications of <i>TP53</i> Mutation in Medulloblastoma. Journal of Clinical Oncology, 2013, 31, 2927-2935.	1.6	381
39	Hyperfractionated Versus Conventional Radiotherapy Followed by Chemotherapy in Standard-Risk Medulloblastoma: Results From the Randomized Multicenter HIT-SIOP PNET 4 Trial. Journal of Clinical Oncology, 2012, 30, 3187-3193.	1.6	270
40	Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature, 2012, 488, 49-56.	27.8	761
41	Dissecting the genomic complexity underlying medulloblastoma. Nature, 2012, 488, 100-105.	27.8	765
42	Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathologica, 2012, 123, 465-472.	7.7	1,536
43	MYC family amplification and clinical risk-factors interact to predict an extremely poor prognosis in childhood medulloblastoma. Acta Neuropathologica, 2012, 123, 501-513.	7.7	87
44	Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathologica, 2012, 123, 473-484.	7.7	863
45	Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups. Acta Neuropathologica, 2011, 121, 381-396.	7.7	474
46	Medulloblastoma Comprises Four Distinct Molecular Variants. Journal of Clinical Oncology, 2011, 29, 1408-1414.	1.6	1,131
47	Definition of Disease-Risk Stratification Groups in Childhood Medulloblastoma Using Combined Clinical, Pathologic, and Molecular Variables. Journal of Clinical Oncology, 2011, 29, 1400-1407.	1.6	263
48	Subtypes of medulloblastoma have distinct developmental origins. Nature, 2010, 468, 1095-1099.	27.8	710
49	The potential impact of tumour biology on improved clinical practice for medulloblastoma: progress towards biologically driven clinical trials. British Journal of Neurosurgery, 2009, 23, 364-375.	0.8	87
50	Integrated Genomics Identifies Five Medulloblastoma Subtypes with Distinct Genetic Profiles, Pathway Signatures and Clinicopathological Features. PLoS ONE, 2008, 3, e3088.	2.5	606
51	Nodule Formation and Desmoplasia in Medulloblastomas—Defining the Nodular/Desmoplastic Variant and Its Biological Behavior. Brain Pathology, 2007, 17, 151-164.	4.1	134
52	Combined genome-wide allelotyping and copy number analysis identify frequent genetic losses without copy number reduction in medulloblastoma. Genes Chromosomes and Cancer, 2006, 45, 47-60.	2.8	43
53	Wnt/Wingless Pathway Activation and Chromosome 6 Loss Characterise a Distinct Molecular Sub-Group of Medulloblastomas Associated with a Favourable Prognosis. Cell Cycle, 2006, 5, 2666-2670.	2.6	247
54	β-Catenin Status Predicts a Favorable Outcome in Childhood Medulloblastoma: The United Kingdom Children's Cancer Study Group Brain Tumour Committee. Journal of Clinical Oncology, 2005, 23, 7951-7957.	1.6	411

STEVEN C CLIFFORD

#	Article	IF	CITATIONS
55	Combined Histopathological and Molecular Cytogenetic Stratification of Medulloblastoma Patients. Clinical Cancer Research, 2004, 10, 5482-5493.	7.0	198
56	The TP53-ARF tumor suppressor pathway is frequently disrupted in large/cell anaplastic medulloblastoma. Molecular Brain Research, 2004, 121, 137-140.	2.3	62
57	Alterations in expression of the multidrug resistance-associated protein (MRP) gene in high-grade transitional cell carcinoma of the bladder. British Journal of Cancer, 1996, 73, 659-666.	6.4	23
58	Increased mdr1 gene transcript levels in high-grade carcinoma of the bladder determined by quantitative PCR-based assay. British Journal of Cancer, 1994, 69, 680-686.	6.4	32