
Reza Forghani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6497587/publications.pdf Version: 2024-02-01

REZA FORCHANI

#	Article	IF	CITATIONS
1	Above and Beyond Age: Prediction of Major Postoperative Adverse Events in Head and Neck Surgery. Annals of Otology, Rhinology and Laryngology, 2022, 131, 697-703.	0.6	6
2	Sparse Bayesian predictive modelling of tumour response using radiomic features. Stat, 2022, 11, .	0.3	0
3	Improved Detection of Chronic Obstructive Pulmonary Disease at Chest CT Using the Mean Curvature of Isophotes. Radiology: Artificial Intelligence, 2022, 4, e210105.	3.0	2
4	Malignancy risk stratification of cystic renal lesions based on a contrast-enhanced CT-based machine learning model and a clinical decision algorithm. European Radiology, 2022, 32, 4116-4127.	2.3	13
5	Radiomics and machine learning for the diagnosis of pediatric cervical non-tuberculous mycobacterial lymphadenitis. Scientific Reports, 2022, 12, 2962.	1.6	6
6	Can activated titanium interbody cages accelerate or enhance spinal fusion? a review of the literature and a design for clinical trials. Journal of Materials Science: Materials in Medicine, 2022, 33, 1.	1.7	4
7	Molecular immunoâ€imaging improves tumor detection in head and neck cancer. FASEB Journal, 2022, 36, e22092.	0.2	0
8	Importance of sex and gender factors for COVID-19 infection and hospitalisation: a sex-stratified analysis using machine learning in UK Biobank data. BMJ Open, 2022, 12, e050450.	0.8	5
9	PET/CT radiomics potentially improves progression-free survival (PFS) and overall survival (OS) prognostication beyond UICC TNM staging in oropharyngeal squamous cell carcinoma (OPSCC) patients. Laryngo- Rhino- Otologie, 2022, , .	0.2	Ο
10	Development and Validation of Multiparametric MRI–based Radiomics Models for Preoperative Risk Stratification of Endometrial Cancer. Radiology, 2022, 305, 375-386.	3.6	30
11	Prediction of post-radiotherapy locoregional progression in HPV-associated oropharyngeal squamous cell carcinoma using machine-learning analysis of baseline PET/CT radiomics. Translational Oncology, 2021, 14, 100906.	1.7	19
12	Site-Specific Variation in Radiomic Features of Head and Neck Squamous Cell Carcinoma and Its Impact on Machine Learning Models. Cancers, 2021, 13, 3723.	1.7	5
13	Investigating the impact of the CT Hounsfield unit range on radiomic feature stability using dual energy CT data. Physica Medica, 2021, 88, 272-277.	0.4	6
14	CT-based radiomics model with machine learning for predicting primary treatment failure in diffuse large B-cell Lymphoma. Translational Oncology, 2021, 14, 101188.	1.7	9
15	Overview of Machine Learning: Part 2. Neuroimaging Clinics of North America, 2020, 30, 417-431.	0.5	31
16	Brief History of Artificial Intelligence. Neuroimaging Clinics of North America, 2020, 30, 393-399.	0.5	63
17	Knowledge Based Versus Data Based. Neuroimaging Clinics of North America, 2020, 30, 401-415.	0.5	6
18	Artificial Intelligence Applications for Workflow, Process Optimization and Predictive Analytics. Neuroimaging Clinics of North America, 2020, 30, e1-e15.	0.5	30

REZA FORGHANI

#	Article	IF	CITATIONS
19	Machine Learning Algorithm Validation. Neuroimaging Clinics of North America, 2020, 30, 433-445.	0.5	55
20	Overview of Machine Learning Part 1. Neuroimaging Clinics of North America, 2020, 30, e17-e32.	0.5	23
21	Machine Learning Applications for Head and Neck Imaging. Neuroimaging Clinics of North America, 2020, 30, 517-529.	0.5	11
22	Patient-Centric Head and Neck Cancer Radiation Therapy. Neuroimaging Clinics of North America, 2020, 30, 341-357.	0.5	1
23	Machine Intelligence in Neurologic and Head and Neck Imaging. Neuroimaging Clinics of North America, 2020, 30, xvii-xviii.	0.5	1
24	Precision Digital Oncology: Emerging Role of Radiomics-based Biomarkers and Artificial Intelligence for Advanced Imaging and Characterization of Brain Tumors. Radiology Imaging Cancer, 2020, 2, e190047.	0.7	26
25	PET/CT radiomics signature of human papilloma virus association in oropharyngeal squamous cell carcinoma. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 2978-2991.	3.3	40
26	Dual Energy Computed Tomography in Head and Neck Imaging. Neuroimaging Clinics of North America, 2020, 30, 311-323.	0.5	14
27	Potential Added Value of PET/CT Radiomics for Survival Prognostication beyond AJCC 8th Edition Staging in Oropharyngeal Squamous Cell Carcinoma. Cancers, 2020, 12, 1778.	1.7	36
28	Multimodal Molecular Imaging Demonstrates Myeloperoxidase Regulation of Matrix Metalloproteinase Activity in Neuroinflammation. Molecular Neurobiology, 2019, 56, 954-962.	1.9	8
29	Dual-Energy CT Texture Analysis With Machine Learning for the Evaluation and Characterization of Cervical Lymphadenopathy. Computational and Structural Biotechnology Journal, 2019, 17, 1009-1015.	1.9	60
30	Radiomics and Artificial Intelligence for Biomarker and Prediction Model Development in Oncology. Computational and Structural Biotechnology Journal, 2019, 17, 995-1008.	1.9	124
31	Transoral robotic surgery for head and neck malignancies: Imaging features in presurgical workup. Head and Neck, 2019, 41, 4018-4025.	0.9	12
32	Differentiation of lymphomatous, metastatic, and non-malignant lymphadenopathy in the neck with quantitative diffusion-weighted imaging: systematic review and meta-analysis. Neuroradiology, 2019, 61, 897-910.	1.1	10
33	An update on advanced dual-energy CT for head and neck cancer imaging. Expert Review of Anticancer Therapy, 2019, 19, 633-644.	1.1	33
34	Image-based biomarkers for solid tumor quantification. European Radiology, 2019, 29, 5431-5440.	2.3	29
35	Head and neck squamous cell carcinoma: prediction of cervical lymph node metastasis by dual-energy CT texture analysis with machine learning. European Radiology, 2019, 29, 6172-6181.	2.3	79
36	Styloid Process Osteoradionecrosis: Report of 3 Cases. Journal of Computer Assisted Tomography, 2019, 43, 472-474.	0.5	1

REZA FORGHANI

#	Article	IF	CITATIONS
37	Practice variations in salivary gland imaging and utility of virtual unenhanced dual energy CT images for the detection of major salivary gland stones. Acta Radiologica, 2019, 60, 1144-1152.	0.5	4
38	Spot and Diffuse Signs: Quantitative Markers of Intracranial Hematoma Expansion at Dual-Energy CT. Radiology, 2019, 290, 179-186.	3.6	27
39	Prediction of High-Risk Group of Primary Refractory Diffuse Large B-Cell Lymphoma (DLBCL) Patients Using a CT-Based Radiomics Model with Machine Learning. Blood, 2019, 134, 4136-4136.	0.6	1
40	Investigation of thyroid nodules: A practical algorithm and review of guidelines. Head and Neck, 2018, 40, 1861-1873.	0.9	7
41	Spectral multi-energy CT texture analysis with machine learning for tissue classification: an investigation using classification of benign parotid tumours as a testing paradigm. European Radiology, 2018, 28, 2604-2611.	2.3	53
42	Comparison of virtual monochromatic series, iodine overlay maps, and single energy CT equivalent images in head and neck cancer conspicuity. Clinical Imaging, 2018, 48, 26-31.	0.8	11
43	Spectral Computed Tomography. Magnetic Resonance Imaging Clinics of North America, 2018, 26, 1-17.	0.6	21
44	Advanced Computed Tomography Techniques: Overview of Dual-Energy CT. Journal of Pediatric Neurology, 2018, 16, 061-071.	0.0	0
45	Endometrial Carcinoma: MR Imaging–based Texture Model for Preoperative Risk Stratification—A Preliminary Analysis. Radiology, 2017, 284, 748-757.	3.6	139
46	Low-Energy Virtual Monochromatic Dual-Energy Computed Tomography Images for the Evaluation of Head and Neck Squamous Cell Carcinoma: A Study of Tumor Visibility Compared With Single-Energy Computed Tomography and User Acceptance. Journal of Computer Assisted Tomography, 2017, 41, 565-571.	0.5	37
47	Routine Dual-Energy Computed Tomography Scanning of the Neck in Clinical Practice. Neuroimaging Clinics of North America, 2017, 27, 523-531.	0.5	6
48	Dual Energy CT: Applications in Head and Neck and Neurologic Imaging. Neuroimaging Clinics of North America, 2017, 27, i.	0.5	0
49	Dual-Energy Computed Tomography. Neuroimaging Clinics of North America, 2017, 27, 385-400.	0.5	67
50	Advanced Tissue Characterization and Texture Analysis Using Dual-Energy Computed Tomography. Neuroimaging Clinics of North America, 2017, 27, 533-546.	0.5	23
51	Dual-Energy Computed Tomography. Neuroimaging Clinics of North America, 2017, 27, 371-384.	0.5	97
52	Applications of Dual-Energy Computed Tomography for the Evaluation of Head and Neck Squamous Cell Carcinoma. Neuroimaging Clinics of North America, 2017, 27, 445-459.	0.5	29
53	Dual-Energy Computed Tomography in Neuroradiology and Head and Neck Imaging: State-of-the-Art. Neuroimaging Clinics of North America, 2017, 27, xvii-xviii.	0.5	3
54	Dual-Energy Computed Tomography of the Neck. Neuroimaging Clinics of North America, 2017, 27, 499-522.	0.5	6

REZA FORGHANI

#	Article	IF	CITATIONS
55	Dual-Energy CT. Journal of Computer Assisted Tomography, 2017, 41, 931-936.	0.5	18
56	Adverse Effects of Gadolinium-Based Contrast Agents. Topics in Magnetic Resonance Imaging, 2016, 25, 163-169.	0.7	22
57	Dual-Energy CT Characteristics of Parathyroid Adenomas on 25-and 55-Second 4D-CT Acquisitions. Journal of Computer Assisted Tomography, 2016, 40, 806-814.	0.5	21
58	3-phase dual-energy CT scan as a feasible salvage imaging modality for the identification of non-localizing parathyroid adenomas: A prospective study. Journal of Otolaryngology - Head and Neck Surgery, 2015, 44, 44.	0.9	23
59	Computed Tomography Appearance of Normal Nonossified Thyroid Cartilage. Journal of Computer Assisted Tomography, 2015, 39, 240-243.	0.5	19
60	Multiparametric Evaluation of Head and Neck Squamous Cell Carcinoma Using a Single-Source Dual-Energy CT with Fast kVp Switching: State of the Art. Cancers, 2015, 7, 2201-2216.	1.7	46
61	Myeloperoxidase Propagates Damage and is a Potential Therapeutic Target for Subacute Stroke. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 485-493.	2.4	66
62	Indicators of a Reduced Intercarotid Artery Distance in Patients Undergoing Endoscopic Transsphenoidal Surgery. Journal of Neurological Surgery, Part B: Skull Base, 2015, 76, 195-201.	0.4	16
63	Advanced dual-energy CT for head and neck cancer imaging. Expert Review of Anticancer Therapy, 2015, 15, 1489-1501.	1.1	34
64	Optimal Virtual Monochromatic Images for Evaluation of Normal Tissues and Head and Neck Cancer Using Dual-Energy CT. American Journal of Neuroradiology, 2015, 36, 1518-1524.	1.2	85
65	Imaging evaluation of lymphadenopathy and patterns of lymph node spread in head and neck cancer. Expert Review of Anticancer Therapy, 2015, 15, 207-224.	1.1	37
66	Radiological Prediction of Skull Base Meningioma Consistency for Endoscopic Resection. Journal of Neurological Surgery, Part B: Skull Base, 2015, 76, .	0.4	0
67	CRISPS: A Pictorial Essay of an Acronym to Interpreting Metastatic Head and Neck Lymphadenopathy. Canadian Association of Radiologists Journal, 2014, 65, 232-241.	1.1	6
68	Analysis of Potential Determinants of a Reduced Intercarotid Distance in Patients Undergoing Endoscopic Transsphenoidal Surgery. Otolaryngology - Head and Neck Surgery, 2014, 151, P111-P111.	1.1	1
69	CRISPS – An Easy Acronym to Interpreting Metastatic Neck Lymphadenopathy. Journal of Neurological Surgery, Part B: Skull Base, 2014, 75, .	0.4	0
70	Angiotensin II Drives the Production of Tumor-Promoting Macrophages. Immunity, 2013, 38, 296-308.	6.6	157
71	Measuring Myeloperoxidase Activity in Biological Samples. PLoS ONE, 2013, 8, e67976.	1.1	265
72	Demyelinating Diseases: Myeloperoxidase as an Imaging Biomarker and Therapeutic Target. Radiology, 2012, 263, 451-460.	3.6	81

Reza Forghani

#	Article	IF	CITATIONS
73	Origins of tumor-associated macrophages and neutrophils. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2491-2496.	3.3	547
74	Ligation of the Jugular Veins Does Not Result in Brain Inflammation or Demyelination in Mice. PLoS ONE, 2012, 7, e33671.	1.1	18
75	Novel Diagnostic Approaches in Bing-Neel Syndrome. Clinical Lymphoma, Myeloma and Leukemia, 2011, 11, 180-183.	0.2	31
76	Clinical Applications of Diffusion. , 2011, , 13-52.		1
77	Pathology of the Oral Region. , 2011, , 1643-1748.		5
78	Ocular Adnexal Lymphoma: Diffusion-weighted MR Imaging for Differential Diagnosis and Therapeutic Monitoring. Radiology, 2010, 256, 565-574.	3.6	100
79	Bing-Neel Syndrome Revisited. Clinical Lymphoma and Myeloma, 2009, 9, 104-106.	1.4	42
80	Fourth Ventricle Epidermoid Tumor: Radiologic, Intraoperative, and Pathologic Findings. Radiographics, 2007, 27, 1489-1494.	1.4	22
81	Functional Organization of a Schwann Cell Enhancer. Journal of Neuroscience, 2005, 25, 11210-11217.	1.7	39
82	A Combinatorial Network of Evolutionarily Conserved <i>Myelin Basic Protein</i> Regulatory Sequences Confers Distinct Glial-Specific Phenotypes. Journal of Neuroscience, 2003, 23, 10214-10223.	1.7	77
83	Automatic "pipeline" analysis of 3-D MRI data for clinical trials: application to multiple sclerosis. IEEE Transactions on Medical Imaging, 2002, 21, 1280-1291.	5.4	679
84	A Distal Upstream Enhancer from theMyelin Basic ProteinGene Regulates Expression in Myelin-Forming Schwann Cells. Journal of Neuroscience, 2001, 21, 3780-3787.	1.7	51
85	MBP-lacZTransgene Expression in Juvenile and AdultTrembler-JMice. Annals of the New York Academy of Sciences, 1999, 883, 538-539.	1.8	3
86	Automatic quantification of MS lesions in 3D MRI brain data sets: Validation of INSECT. Lecture Notes in Computer Science, 1998, , 439-448.	1.0	88
87	Adenosine antagonists have differential effects on induction of long-term potentiation in hippocampal slices. Hippocampus, 1995, 5, 71-77.	0.9	37