
Nakita K Noel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6496738/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improved Charge Balance in Green Perovskite Light-Emitting Diodes with Atomic-Layer-Deposited Al ₂ O ₃ . ACS Applied Materials & Interfaces, 2022, 14, 34247-34252.	4.0	10
2	Utilizing Nonpolar Organic Solvents for the Deposition of Metal-Halide Perovskite Films and the Realization of Organic Semiconductor/Perovskite Composite Photovoltaics. ACS Energy Letters, 2022, 7, 1246-1254.	8.8	12
3	Role of Photon Recycling and Band Filling in Halide Perovskite Photoluminescence under Focussed Excitation Conditions. Journal of Physical Chemistry C, 2021, 125, 2240-2249.	1.5	11
4	Elucidating the Role of a Tetrafluoroborateâ€Based Ionic Liquid at the nâ€Type Oxide/Perovskite Interface. Advanced Energy Materials, 2020, 10, 1903231.	10.2	81
5	Crystalline Nature of Colloids in Methylammonium Lead Halide Perovskite Precursor Inks Revealed by Cryo-Electron Microscopy. Journal of Physical Chemistry Letters, 2020, 11, 5980-5986.	2.1	30
6	Ultraviolet Photoemission Spectroscopy and Kelvin Probe Measurements on Metal Halide Perovskites: Advantages and Pitfalls. Advanced Energy Materials, 2020, 10, 1903252.	10.2	33
7	Light Absorption and Recycling in Hybrid Metal Halide Perovskite Photovoltaic Devices. Advanced Energy Materials, 2020, 10, 1903653.	10.2	28
8	Interfacial charge-transfer doping of metal halide perovskites for high performance photovoltaics. Energy and Environmental Science, 2019, 12, 3063-3073.	15.6	111
9	Elucidating the long-range charge carrier mobility in metal halide perovskite thin films. Energy and Environmental Science, 2019, 12, 169-176.	15.6	115
10	Rapid Charge-Transfer Cascade through SWCNT Composites Enabling Low-Voltage Losses for Perovskite Solar Cells. ACS Energy Letters, 2019, 4, 1872-1879.	8.8	33
11	Facile Synthesis of Stable and Highly Luminescent Methylammonium Lead Halide Nanocrystals for Efficient Light Emitting Devices. Journal of the American Chemical Society, 2019, 141, 1269-1279.	6.6	108
12	Mixed Lead–Tin Halide Perovskites for Efficient and Wavelengthâ€Tunable Nearâ€Infrared Lightâ€Emitting Diodes. Advanced Materials, 2019, 31, e1806105.	11.1	66
13	Solution-Processed All-Perovskite Multi-junction Solar Cells. Joule, 2019, 3, 387-401.	11.7	177
14	Time-resolved imaging of carrier transport in halide perovskite thin films and evidence for nondiffusive transport. Physical Review Materials, 2019, 3, .	0.9	10
15	Highly Crystalline Methylammonium Lead Tribromide Perovskite Films for Efficient Photovoltaic Devices. ACS Energy Letters, 2018, 3, 1233-1240.	8.8	54
16	Perovskite based optoelectronics: molecular design perspectives – a themed collection. Molecular Systems Design and Engineering, 2018, 3, 700-701.	1.7	2
17	Unravelling the Improved Electronic and Structural Properties of Methylammonium Lead Iodide Deposited from Acetonitrile. Chemistry of Materials, 2018, 30, 7737-7743.	3.2	23
18	Hysteresis Index: A Figure without Merit for Quantifying Hysteresis in Perovskite Solar Cells. ACS Energy Letters, 2018, 3, 2472-2476.	8.8	257

NAKITA K NOEL

#	Article	IF	CITATIONS
19	Atomic Layer Deposited Electron Transport Layers in Efficient Organometallic Halide Perovskite Devices. MRS Advances, 2018, 3, 3075-3084.	0.5	8
20	Modification of the fluorinated tin oxide/electron-transporting material interface by a strong reductant and its effect on perovskite solar cell efficiency. Molecular Systems Design and Engineering, 2018, 3, 741-747.	1.7	9
21	Crystallization Kinetics and Morphology Control of Formamidinium–Cesium Mixedâ€Cation Lead Mixedâ€Halide Perovskite via Tunability of the Colloidal Precursor Solution. Advanced Materials, 2017, 29, 1607039.	11.1	263
22	Unveiling the Influence of pH on the Crystallization of Hybrid Perovskites, Delivering Low Voltage Loss Photovoltaics. Joule, 2017, 1, 328-343.	11.7	148
23	Consolidation of the optoelectronic properties of CH3NH3PbBr3 perovskite single crystals. Nature Communications, 2017, 8, 590.	5.8	207
24	Metal Halide Perovskite Polycrystalline Films Exhibiting Properties of Single Crystals. Joule, 2017, 1, 155-167.	11.7	264
25	Efficient and Stable Perovskite Solar Cells Using Molybdenum Tris(dithiolene)s as p-Dopants for Spiro-OMeTAD. ACS Energy Letters, 2017, 2, 2044-2050.	8.8	79
26	Investigating the Role of 4â€ <i>Tert</i> Butylpyridine in Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1601079.	10.2	106
27	A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films. Energy and Environmental Science, 2017, 10, 145-152.	15.6	319
28	Mechanism for rapid growth of organic–inorganic halide perovskite crystals. Nature Communications, 2016, 7, 13303.	5.8	191
29	Hydrophobic Organic Hole Transporters for Improved Moisture Resistance in Metal Halide Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 5981-5989.	4.0	184
30	Stability of Metal Halide Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1500963.	10.2	1,045
31	Atmospheric Influence upon Crystallization and Electronic Disorder and Its Impact on the Photophysical Properties of Organic–Inorganic Perovskite Solar Cells. ACS Nano, 2015, 9, 2311-2320.	7.3	173
32	Dye Monolayers Used as the Hole Transporting Medium in Dyeâ€ S ensitized Solar Cells. Advanced Materials, 2015, 27, 5889-5894.	11.1	19
33	Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells. Nature Communications, 2015, 6, 10030.	5.8	620
34	Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy and Environmental Science, 2014, 7, 3061-3068.	15.6	2,086
35	Observation of Annealing-Induced Doping in TiO ₂ Mesoporous Single Crystals for Use in Solid State Dye Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 1821-1827.	1.5	19
36	Performance and Stability Enhancement of Dye‧ensitized and Perovskite Solar Cells by Al Doping of TiO ₂ . Advanced Functional Materials, 2014, 24, 6046-6055.	7.8	330

NAKITA K NOEL

#	Article	IF	CITATIONS
37	Enhanced Photoluminescence and Solar Cell Performance <i>via</i> Lewis Base Passivation of Organic–Inorganic Lead Halide Perovskites. ACS Nano, 2014, 8, 9815-9821.	7.3	1,439
38	Lessons Learned: From Dyeâ€Sensitized Solar Cells to Allâ€Solidâ€State Hybrid Devices. Advanced Materials, 2014, 26, 4013-4030.	11.1	144
39	Polystyrene Templated Porous Titania Wells for Quantum Dot Heterojunction Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 14247-14252.	4.0	11
40	Anomalous Hysteresis in Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 1511-1515.	2.1	2,190
41	Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature, 2013, 495, 215-219.	13.7	751