Nakita K Noel

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6496738/nakita-k-noel-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

26 9,567 41 39 h-index g-index citations papers 6.12 10,625 18.4 41 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
39	Utilizing Nonpolar Organic Solvents for the Deposition of Metal-Halide Perovskite Films and the Realization of Organic Semiconductor/Perovskite Composite Photovoltaics <i>ACS Energy Letters</i> , 2022 , 7, 1246-1254	20.1	1
38	Role of Photon Recycling and Band Filling in Halide Perovskite Photoluminescence under Focussed Excitation Conditions. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 2240-2249	3.8	4
37	Ultraviolet Photoemission Spectroscopy and Kelvin Probe Measurements on Metal Halide Perovskites: Advantages and Pitfalls. <i>Advanced Energy Materials</i> , 2020 , 10, 1903252	21.8	23
36	Elucidating the Role of a Tetrafluoroborate-Based Ionic Liquid at the n-Type Oxide/Perovskite Interface. <i>Advanced Energy Materials</i> , 2020 , 10, 1903231	21.8	50
35	Crystalline Nature of Colloids in Methylammonium Lead Halide Perovskite Precursor Inks Revealed by Cryo-Electron Microscopy. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 5980-5986	6.4	16
34	Light Absorption and Recycling in Hybrid Metal Halide Perovskite Photovoltaic Devices. <i>Advanced Energy Materials</i> , 2020 , 10, 1903653	21.8	17
33	Elucidating the long-range charge carrier mobility in metal halide perovskite thin films. <i>Energy and Environmental Science</i> , 2019 , 12, 169-176	35.4	76
32	Rapid Charge-Transfer Cascade through SWCNT Composites Enabling Low-Voltage Losses for Perovskite Solar Cells. <i>ACS Energy Letters</i> , 2019 , 4, 1872-1879	20.1	24
31	Interfacial charge-transfer doping of metal halide perovskites for high performance photovoltaics. <i>Energy and Environmental Science</i> , 2019 , 12, 3063-3073	35.4	77
30	Time-resolved imaging of carrier transport in halide perovskite thin films and evidence for nondiffusive transport. <i>Physical Review Materials</i> , 2019 , 3,	3.2	6
29	Facile Synthesis of Stable and Highly Luminescent Methylammonium Lead Halide Nanocrystals for Efficient Light Emitting Devices. <i>Journal of the American Chemical Society</i> , 2019 , 141, 1269-1279	16.4	83
28	Mixed Lead-Tin Halide Perovskites for Efficient and Wavelength-Tunable Near-Infrared Light-Emitting Diodes. <i>Advanced Materials</i> , 2019 , 31, e1806105	24	37
27	Solution-Processed All-Perovskite Multi-junction Solar Cells. <i>Joule</i> , 2019 , 3, 387-401	27.8	109
26	Highly Crystalline Methylammonium Lead Tribromide Perovskite Films for Efficient Photovoltaic Devices. <i>ACS Energy Letters</i> , 2018 , 3, 1233-1240	20.1	43
25	Modification of the fluorinated tin oxide/electron-transporting material interface by a strong reductant and its effect on perovskite solar cell efficiency. <i>Molecular Systems Design and Engineering</i> , 2018 , 3, 741-747	4.6	7
24	Unravelling the Improved Electronic and Structural Properties of Methylammonium Lead Iodide Deposited from Acetonitrile. <i>Chemistry of Materials</i> , 2018 , 30, 7737-7743	9.6	19
23	Hysteresis Index: A Figure without Merit for Quantifying Hysteresis in Perovskite Solar Cells. <i>ACS Energy Letters</i> , 2018 , 3, 2472-2476	20.1	150

(2014-2018)

22	Atomic Layer Deposited Electron Transport Layers in Efficient Organometallic Halide Perovskite Devices. <i>MRS Advances</i> , 2018 , 3, 3075-3084	0.7	6
21	Crystallization Kinetics and Morphology Control of Formamidinium-Cesium Mixed-Cation Lead Mixed-Halide Perovskite via Tunability of the Colloidal Precursor Solution. <i>Advanced Materials</i> , 2017 , 29, 1607039	24	197
20	Unveiling the Influence of pH on the Crystallization of Hybrid Perovskites, Delivering Low Voltage Loss Photovoltaics. <i>Joule</i> , 2017 , 1, 328-343	27.8	104
19	Consolidation of the optoelectronic properties of CHNHPbBr perovskite single crystals. <i>Nature Communications</i> , 2017 , 8, 590	17.4	164
18	Metal Halide Perovskite Polycrystalline Films Exhibiting Properties of Single Crystals. <i>Joule</i> , 2017 , 1, 15	5 <u>21</u> 7687	222
17	Efficient and Stable Perovskite Solar Cells Using Molybdenum Tris(dithiolene)s as p-Dopants for Spiro-OMeTAD. <i>ACS Energy Letters</i> , 2017 , 2, 2044-2050	20.1	63
16	Investigating the Role of 4-Tert Butylpyridine in Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2017 , 7, 1601079	21.8	76
15	A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films. <i>Energy and Environmental Science</i> , 2017 , 10, 145-152	35.4	253
14	Mechanism for rapid growth of organic-inorganic halide perovskite crystals. <i>Nature Communications</i> , 2016 , 7, 13303	17.4	150
13	Hydrophobic Organic Hole Transporters for Improved Moisture Resistance in Metal Halide Perovskite Solar Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 5981-9	9.5	158
12	Atmospheric influence upon crystallization and electronic disorder and its impact on the photophysical properties of organic-inorganic perovskite solar cells. <i>ACS Nano</i> , 2015 , 9, 2311-20	16.7	152
11	Dye monolayers used as the hole transporting medium in dye-sensitized solar cells. <i>Advanced Materials</i> , 2015 , 27, 5889-94	24	18
10	Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells. <i>Nature Communications</i> , 2015 , 6, 10030	17.4	492
9	Stability of Metal Halide Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2015 , 5, 1500963	21.8	861
8	Lead-free organicIhorganic tin halide perovskites for photovoltaic applications. <i>Energy and Environmental Science</i> , 2014 , 7, 3061-3068	35.4	1635
7	Observation of Annealing-Induced Doping in TiO2 Mesoporous Single Crystals for Use in Solid State Dye Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 1821-1827	3.8	19
6	Performance and Stability Enhancement of Dye-Sensitized and Perovskite Solar Cells by Al Doping of TiO2. <i>Advanced Functional Materials</i> , 2014 , 24, 6046-6055	15.6	294
5	Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites. <i>ACS Nano</i> , 2014 , 8, 9815-21	16.7	1194

4	Lessons learned: from dye-sensitized solar cells to all-solid-state hybrid devices. <i>Advanced Materials</i> , 2014 , 26, 4013-30	24	133
3	Polystyrene templated porous titania wells for quantum dot heterojunction solar cells. <i>ACS Applied Materials & ACS Applied & ACS Appl</i>	9.5	10
2	Anomalous Hysteresis in Perovskite Solar Cells. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 1511-5	6.4	1951
1	Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. <i>Nature</i> , 2013 , 495, 215-9	50.4	669