Hans E Purkey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6496679/publications.pdf Version: 2024-02-01

HANS F DUDEEV

#	Article	IF	CITATIONS
1	Conformation-locking antibodies for the discovery and characterization of KRAS inhibitors. Nature Biotechnology, 2022, 40, 769-778.	17.5	5
2	Structure-based optimization of hydroxylactam as potent, cell-active inhibitors of lactate dehydrogenase. Bioorganic and Medicinal Chemistry Letters, 2022, 59, 128576.	2.2	0
3	Stereochemical Differences in Fluorocyclopropyl Amides Enable Tuning of Btk Inhibition and Off-Target Activity. ACS Medicinal Chemistry Letters, 2020, 11, 1588-1597.	2.8	12
4	Abstract PR03: Selective degradation of mutant PIK3CA promotes increased mutant specificity in a subset of PI3K ATP-competitive inhibitors. , 2020, , .		0
5	Design and Evaluation of Highly Selective Human Immunoproteasome Inhibitors Reveal a Compensatory Process That Preserves Immune Cell Viability. Journal of Medicinal Chemistry, 2019, 62, 7032-7041.	6.4	26
6	Design of a brain-penetrant CDK4/6 inhibitor for glioblastoma. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2294-2301.	2.2	39
7	Structural basis for dual-mode inhibition of the ABC transporter MsbA. Nature, 2018, 557, 196-201.	27.8	125
8	Disrupting Gram-Negative Bacterial Outer Membrane Biosynthesis through Inhibition of the Lipopolysaccharide Transporter MsbA. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	48
9	Structural basis for antagonism of bacterial LPS transport. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, a126-a126.	0.1	0
10	Cell Active Hydroxylactam Inhibitors of Human Lactate Dehydrogenase with Oral Bioavailability in Mice. ACS Medicinal Chemistry Letters, 2016, 7, 896-901.	2.8	41
11	Metabolic plasticity underpins innate and acquired resistance to LDHA inhibition. Nature Chemical Biology, 2016, 12, 779-786.	8.0	180
12	Discovery of a Noncovalent, Mutant-Selective Epidermal Growth Factor Receptor Inhibitor. Journal of Medicinal Chemistry, 2016, 59, 9080-9093.	6.4	16
13	Pyridones as Highly Selective, Noncovalent Inhibitors of T790M Double Mutants of EGFR. ACS Medicinal Chemistry Letters, 2016, 7, 100-104.	2.8	29
14	4-Aminoindazolyl-dihydrofuro[3,4- d]pyrimidines as non-covalent inhibitors of mutant epidermal growth factor receptor tyrosine kinase. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 534-539.	2.2	42
15	Noncovalent Mutant Selective Epidermal Growth Factor Receptor Inhibitors: A Lead Optimization Case Study. Journal of Medicinal Chemistry, 2015, 58, 8877-8895.	6.4	43
16	Optimization of 5-(2,6-dichlorophenyl)-3-hydroxy-2-mercaptocyclohex-2-enones as potent inhibitors of human lactate dehydrogenase. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 75-82.	2.2	18
17	Identification of 3,6-disubstituted dihydropyrones as inhibitors of human lactate dehydrogenase. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5683-5687.	2.2	17
18	8-Tetrahydropyran-2-yl Chromans: Highly Selective Beta-Site Amyloid Precursor Protein Cleaving Enzyme 1 (BACE1) Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 10112-10129.	6.4	17

HANS E PURKEY

#	Article	IF	CITATIONS
19	Synthesis, characterization, and PK/PD studies of a series of spirocyclic pyranochromene BACE1 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2477-2480.	2.2	12
20	Discovery of 7-Tetrahydropyran-2-yl Chromans: β-Site Amyloid Precursor Protein Cleaving Enzyme 1 (BACE1) Inhibitors That Reduce Amyloid β-Protein (Aβ) in the Central Nervous System. Journal of Medicinal Chemistry, 2014, 57, 878-902.	6.4	36
21	Discovery of Selective and Noncovalent Diaminopyrimidine-Based Inhibitors of Epidermal Growth Factor Receptor Containing the T790M Resistance Mutation. Journal of Medicinal Chemistry, 2014, 57, 10176-10191.	6.4	53
22	Identification of substituted 3-hydroxy-2-mercaptocyclohex-2-enones as potent inhibitors of human lactate dehydrogenase. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3764-3771.	2.2	37
23	Discovery of a Potent and Selective BCL-X _L Inhibitor with <i>in Vivo</i> Activity. ACS Medicinal Chemistry Letters, 2014, 5, 1088-1093.	2.8	242
24	Abstract 964: Inhibiting glycolysis with an LDHA inhibitor: A new solution to an old problem. Cancer Research, 2014, 74, 964-964.	0.9	3
25	Abstract 1423: Resistance to LDHA inhibitors requires signaling through the AMPK/mTOR/S6K pathway leading to increased oxidative phosphorylation. , 2014, , .		Ο
26	ldentification of substituted 2-thio-6-oxo-1,6-dihydropyrimidines as inhibitors of human lactate dehydrogenase. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3186-3194.	2.2	72
27	Diethylaminosulfur trifluoride-mediated intramolecular cyclization of 2-hydroxycycloalkylureas to fused bicyclic aminooxazoline compounds and evaluation of their biochemical activity against l²-secretase-1 (BACE-1). Tetrahedron Letters, 2013, 54, 5802-5807.	1.4	5
28	Spirocyclic β-Site Amyloid Precursor Protein Cleaving Enzyme 1 (BACE1) Inhibitors: From Hit to Lowering of Cerebrospinal Fluid (CSF) Amyloid β in a Higher Species. Journal of Medicinal Chemistry, 2013, 56, 3379-3403.	6.4	50
29	A multivalent approach towards linked dual-pharmacology prostaglandin F receptor agonist/carbonic anhydrase-II inhibitors for the treatment of glaucoma. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 939-943.	2.2	19
30	Diazinones as P2 replacements for pyrazole-based cathepsin S inhibitors. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4060-4064.	2.2	19
31	2-Aminobenzimidazoles as potent Aurora kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 5158-5161.	2.2	41
32	Design and synthesis of 2-amino-isoxazolopyridines as Polo-like kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5186-5189.	2.2	18
33	Design and synthesis of 2-amino-pyrazolopyridines as Polo-like kinase 1 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5648-5652.	2.2	25
34	Tethering identifies fragment that yields potent inhibitors of human caspase-1. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 559-562.	2.2	32
35	Design, synthesis, and evaluation of oxazole transthyretin amyloidogenesis inhibitors. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 1075-1078.	2.2	51
36	Design, Synthesis, and Evaluation of Oxazole Transthyretin Amyloidogenesis Inhibitors ChemInform, 2005, 36, no.	0.0	0

HANS E PURKEY

#	Article	IF	CITATIONS
37	Structural analysis of caspase-1 inhibitors derived from Tethering. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 451-458.	0.7	22
38	Potent and Selective Structure-Based Dibenzofuran Inhibitors of Transthyretin Amyloidogenesis:Â Kinetic Stabilization of the Native State. Journal of the American Chemical Society, 2005, 127, 6662-6671.	13.7	76
39	Bisaryloxime Ethers as Potent Inhibitors of Transthyretin Amyloid Fibril Formation. Journal of Medicinal Chemistry, 2005, 48, 1576-1587.	6.4	97
40	Hydroxylated Polychlorinated Biphenyls Selectively Bind Transthyretin in Blood and Inhibit Amyloidogenesis: Rationalizing Rodent PCB Toxicity. Chemistry and Biology, 2004, 11, 1719-1728.	6.0	132
41	Title is missing!. Angewandte Chemie, 2003, 115, 2864-2867.	2.0	38
42	Benzoxazoles as Transthyretin Amyloid Fibril Inhibitors: Synthesis, Evaluation, and Mechanism of Action. Angewandte Chemie - International Edition, 2003, 42, 2758-2761.	13.8	204
43	Screening Transthyretin Amyloid Fibril Inhibitors. Structure, 2002, 10, 851-863.	3.3	106
44	Structure-Based Design, Synthesis and Evaluation of Amyloid Fibril Inhibitors. Biochemical Society Transactions, 2000, 28, A51-A51.	3.4	0
45	Synthesis and evaluation of anthranilic acid-based transthyretin amyloid fibril inhibitors. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 1-6.	2.2	83